
Shale: A Practical, Scalable Oblivious Reconfigurable Network
Daniel Amir

Cornell University
Ithaca, New York, USA

Nitika Saran
Cornell University

Ithaca, New York, USA

Tegan Wilson
Cornell University

Ithaca, New York, USA

Robert Kleinberg
Cornell University

Ithaca, New York, USA

Vishal Shrivastav
Purdue University

West Lafayette, Indiana, USA

Hakim Weatherspoon
Cornell University

Ithaca, New York, USA

ABSTRACT
Circuit-switched technologies have long been proposed for han-
dling high-throughput traffic in datacenter networks, but recent
developments in nanosecond-scale reconfiguration have created
the enticing possibility of handling low-latency traffic as well. The
novel Oblivious Reconfigurable Network (ORN) design paradigm
promises to deliver on this possibility. Prior work in ORN designs
achieved latencies that scale linearly with system size, making them
unsuitable for large-scale deployments. Recent theoretical work
showed that ORNs can achieve far better latency scaling, proposing
theoretical ORN designs that are Pareto optimal in latency and
throughput.

In this work, we bridge multiple gaps between theory and prac-
tice to develop Shale, the first ORN capable of providing low-
latency networking at datacenter scale while still guaranteeing high
throughput. By interleaving multiple Pareto optimal schedules in
parallel, both latency- and throughput-sensitive flows can achieve
optimal performance. To achieve the theoretical low latencies in
practice, we design a new congestion control mechanism which
is best suited to the characteristics of Shale. In datacenter-scale
packet simulations, our design compares favorably with both an
in-network congestion mitigation strategy, modern receiver-driven
protocols such as NDP, and an idealized analog for sender-driven
protocols. We implement an FPGA-based prototype of Shale, achiev-
ing orders of magnitude better resource scaling than existing ORN
proposals. Finally, we extend our congestion control solution to
handle node and link failures.

CCS CONCEPTS
• Networks → Data center networks; Network architectures;
Network simulations.

KEYWORDS
Optical Switches, Datacenter Networks, Nanosecond Switching

ACM Reference Format:
Daniel Amir, Nitika Saran, Tegan Wilson, Robert Kleinberg, Vishal Shrivas-
tav, and Hakim Weatherspoon. 2024. Shale: A Practical, Scalable Oblivious

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0614-1/24/08
https://doi.org/10.1145/3651890.3672248

Reconfigurable Network. In ACM SIGCOMM 2024 Conference (ACM SIG-
COMM ’24), August 4–8, 2024, Sydney, NSW, Australia. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3651890.3672248

1 INTRODUCTION
Traditional datacenter networks have been designed primarily us-
ing packet switches. However, as network technologies and the de-
sired characteristics of datacenter deployments continue to evolve,
the limitations of packet switches are becoming more apparent. Due
to the end of Moore’s Law and Dennard Scaling, packet switches
face increasing difficulty in scaling to meet network demands with-
out consuming unnecessarily large amounts of power, both within
high-density racks [39] and throughout the datacenter [2]. As a
result, many emerging network designs have intentionally avoided
using packet switches [9, 13, 18, 22, 24, 32, 40, 46]. Circuit switches
present an exciting alternative to packet switches due to their re-
duced power consumption [2, 39], and potential to scale to arbi-
trary bandwidth (in the case of optical switches) [5, 24]. While
historically, slow reconfiguration times limited the applicability of
circuit switches to low-latency traffic, recent circuit switch designs
have emerged that are capable of nanosecond-scale reconfiguration
times, including both electrical [25] and optical [5, 8, 10] switches.
Because circuit switches must be explicitly reconfigured to con-
nect new source-destination pairs, using them imposes a design
challenge. Until recently, circuit switched network designs have ap-
proached this problem by dynamically recomputing circuit switch
configurations in response to new traffic [17, 18, 40]. Unfortunately,
this dynamic reconfiguration process is impractical at the nanosec-
ond timescales possible with recent switch designs, making them
ill-suited to supporting low-latency traffic.

Oblivious Reconfigurable Networks (ORNs) are a new network
design paradigm that can realize the potential of modern, rapid
circuit switches. In ORNs, circuit switches are reconfigured oblivi-
ous to traffic, using a predetermined schedule, thus eliminating the
latency inherent in classical designs. To support arbitrary traffic,
ORNs use an oblivious routing scheme to route data indirectly to its
destination. By co-designing the schedule and routing scheme, good
performance can be achieved regardless of the traffic pattern, with-
out dynamically adapting any part of the network. RotorNet [27],
Shoal [39], and Sirius [5] are three network designs following the
ORN concept that have already been demonstrated on physical
test-beds. However, these designs all maximize throughput at the
cost of poor latency scaling. As a result, they are not well suited to
support modern datacenter traffic, that comprises a wide mixture
of flows (multiple traffic classes) with different throughput and
latency requirements [16].

https://orcid.org/0000-0002-6294-9604
https://orcid.org/0000-0002-5968-0106
https://orcid.org/0000-0003-2579-1147
https://orcid.org/0000-0002-8306-3407
https://orcid.org/0000-0003-2770-4799
https://orcid.org/0000-0002-6361-7687
https://doi.org/10.1145/3651890.3672248
https://doi.org/10.1145/3651890.3672248

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia D. Amir, N. Saran, T. Wilson, R. Kleinberg, V. Shrivastav, H. Weatherspoon

0.0 0.1 0.2 0.3 0.4 0.5
Throughput (fraction of line rate)

102

103

104

105

106
In

tr
in

si
c

la
te

n
cy

 (
ti

m
e
sl

o
ts

)

Figure 1: A comparison of the throughput and intrinsic laten-
cies achievable by various tunings of Shale for a 100,000-node
network. For our evaluation, timeslots begin every 5.632 ns.

We present Shale, an ORN that generalizes existing designs to
achieve a tunable tradeoff between throughput and latency scaling.
For datacenter-scale networks, Shale can be tuned to achieve an
intrinsic latency multiple orders of magnitude lower than that of ex-
isting systems such as Shoal, Rotornet, and Sirius (which all reduce
to a special tuning of Shale), as shown in Figure 1. Shale achieves
this tunable tradeoff by carefully choosing a schedule from a collec-
tion of ORN schedules, each of which has been shown to achieve a
Pareto optimal tradeoff between throughput and latency [4]. Shale
additionally proposes a novel interleaving technique (Section 3.2)
that carefully combines multiple ORN schedules. This allows multi-
ple traffic classes, such as low latency and high throughput traffic,
to simultaneously each be served on their ideal schedule.

Next, in order to achieve the Pareto optimal throughput-latency
tradeoff, the traffic needs to be uniformly load balanced across
all nodes in a Shale network (Section 3.1). This high degree of
multi-pathing poses a challenge for exisitng congestion control
algorithms, that fall short in maintaining low queueing in the net-
work (Section 3.3). To overcome this, we design a novel congestion
control algorithm which extensively modifies an existing ORN
congestion control [39] to work in Shale’s multi-hop context. Our
algorithm achieves bounded queuing with minimal resource and
processing overheads. Our algorithm is Finally, we extend our con-
gestion control mechanism to communicate node and link failures
in real time, allowing traffic to be rerouted with minimal impact on
throughput and latency (Section 3.4).

Using both an FPGA-based hardware prototype and large-scale
packet simulations, we show that Shale’s mechanisms achieve close
to theoretical throughput and latency guarantees, while also achiev-
ing up to 13× better tail latency and 20× better tail buffer occupancy
than state-of-the-art congestion control protocols such as NDP [19].

This work does not raise any ethical issues.

2 BACKGROUND
ORNs set up circuits based on a traffic-oblivious schedule which
can be expressed in terms of timeslots. During each timeslot, the
schedule dictates which nodes are to be connected to which other
nodes, and switches remain in a fixed configuration, allowing nodes
to send a single cell. This schedule is run synchronously, enabled
by nanosecond-scale clock synchronization [5, 21, 38] and careful
control of the propagation delay of each link. Timeslots are sepa-
rated by guard bands to allow switches to reconfigure and absorb

Node
A B C D E F

Ti
m
es
lo
t

1 B C D E F A
2 C D E F A B
3 D E F A B C
4 E F A B C D
5 F A B C D E

A

F C

B

E D

Figure 2: A single round-robin schedule for 6 nodes and con-
nections formed over the course of the schedule.

clock drift. To support arbitrary traffic patterns, oblivious routing
is used to route data indirectly to its destination.

Several designs, including Rotornet [27], Shoal [39], and Sir-
ius [5], have been proposed following the ORN paradigm, all of
which use similar, easy-to-express schedules and routing schemes.
Here, we present an abstracted version of these designs which we
refer to as the Single Round-Robin Design (SRRD). As the name
implies, this design uses a schedule based on a single round-robin
among all nodes in the system. We refer to one iteration of the
schedule (one round-robin in this case) as an epoch.

To support arbitrary workloads, the SRRD uses a routing scheme
based on Valiant Load Balancing (VLB) [45]. In VLB, when a node
has a cell to send, rather than sending it directly to the destination, it
first sends to a random intermediate node in the system1. The SRRD
accomplishes this in one hop, which we refer to as the spraying hop,
since it accomplishes packet spraying. Next, the cell is forwarded
directly to the destination. This is also accomplished in one hop in
the SRRD, which we refer to as a direct hop.

Since half of all hops in the SRRD are spraying hops, while half
are direct hops that end at the destination node, a fully-congested
SRRD network achieves destination throughput of half of the line
rate. The use of VLB ensures that the network is evenly loaded
across all workloads, preventing any bottleneck links that would
further reduce throughput.

Ignoring queuing for now, this design achieves a latency of 𝑁
timeslots in the worst case. The first hop to the intermediate node
takes place over the first timeslot. However, in the worst case, the
cell may need to wait an entire epoch to be able to forward the cell
to the destination, for a total latency of 𝑁 timeslots. As a result,
this design has poor latency scalability; while ORNs have been
proposed for systems with tens of thousands of nodes [5], systems
based on the SRRD have thus far only been evaluated on hundreds
of nodes.

3 SHALE
In this section, we present Shale, which is a generalization of ex-
isting SRRD ORN designs, providing tunable tradeoff between
throughput and latency. We start by describing Shale’s schedule
and routing scheme, followed by how Shale combines its sched-
ules to support multiple traffic classes. Finally, we describe Shale’s
congestion control.

1Both the SRRD and Shale deviate from this slightly to improve latency. When a
node has a cell to send, it sends the cell to the first neighbor it can, rather than a
random one. While long flows will sample all outgoing links, and flow arrival usually
produces sufficient randomness for short flows, additional mechanisms (described in
Section 3.3.2) ensure that intermediate nodes are well-distributed in all cases.

Shale: A Practical, Scalable Oblivious Reconfigurable Network ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Node
AA BA CA · · · BC CC

Ti
m
es
lo
t 1 BA CA AA · · · CC AC

2 CA AA BA · · · AC BC
3 AB BB CB · · · BA CA
4 AC BC CC · · · BB CB

AA CA

AC CC

CB

BC

BA

AB BB

Figure 3: Shale’s schedule with ℎ = 2 for nine nodes. Here,
each node is labeled with two letters, and participates in
round robins with nodes differing by only one letter.
3.1 Schedule and Routing Scheme
Our recent theoretical work [4] has shown that within the ORN
design space, many Pareto optimal tradeoffs are possible between
worst-case throughput and intrinsic latency (latency resulting from
the properties of the schedule and routing scheme, rather than
queuing delay). Intuitively, this tradeoff exists because reducing
intrinsic latency requires using paths with more hops, which have
the flexibility to reach all nodes in the system using a shorter sched-
ule. However, using more hops means each cell consumes more
bandwidth over its entire path, reducing throughput. In our pre-
vious work [4], we proposed a family of theoretical ORN designs,
called EBS, which forms the basis for Shale’s schedule and routing
scheme. EBS generalized the SRRD to use ℎ spraying and ℎ direct
hops, rather than just one of each, achieving a maximum intrinsic
latency of O(ℎ ℎ

√
𝑁) and support throughput of 1

2ℎ . This config-
urable tradeoff between throughput and latency is always Pareto
optimal for ORN designs, up to a constant factor in latency [4].

Shale directly uses the EBS schedule. In this schedule, rather
than participating in a single round-robin among all nodes, nodes
instead participate in ℎ smaller round-robins, which we refer to as
phases. Each node is assigned a unique set of ℎ coordinates ranging
from 1 to ℎ

√
𝑁 . During a given phase, a node connects to each of

the ℎ
√
𝑁 − 1 nodes that match in all but a specific coordinate. An

example of this schedule is shown in Figure 3.
Shale’s routing scheme adapts the EBS routing scheme to work

with fixed-size cells2. Paths are constructed using VLB, and are
divided into spraying and direct hops. As in the SRRD, the first
spraying hop is taken to the first available neighboring node. Fol-
lowing this, during the subsequent ℎ − 1 phases, a random hop is
taken. The first ℎ hops thus have the overall effect of randomizing
all ℎ coordinates, sending the cell to a random intermediate node
in the system. We refer to these hops as the spraying semi-path.
Afterwards, during each of the following ℎ phases, the cell is sent
to the node which matches the destination in the corresponding
coordinate. This takes up to ℎ further hops, across up to ℎ adjacent
phases. We refer to the ℎ direct hops as the direct semi-path.

For example, in ℎ = 2 Shale, a cell could be sent from node AA
to node CC via the path AA→BA→BB→CB→CC. In this path, the
portion from AA to BB is the spraying semi-path, and from BB to
CC is the direct semi-path.

Overall, paths in Shale are up to 2ℎ hops long, and take place
over up to 2ℎ adjacent phases. This corresponds to an intrinsic

2 EBS’s design assumes fractional flow: each unit of flow is evenly divided between all
possible intermediate nodes. In Shale, fixed-size cells cannot be subdivided, and must
therefore each traverse a single path.

Flow size

0-
4k

B

4-
16

kB

16
-6

4k
B

64
-2

56
kB

25
6k

B-1
M
B

1-
4M

B

4-
15

M
B

15
-3

2M
B

32
-6

4M
B

64
M
B+

0

100

200

300

400

9
9

.9
%

 F
C

T
 (

si
ze

-n
o
rm

a
liz

e
d
)

Heavy-tailed workload, N=576, L=0.4

Opera

Shale h=1 (same schedule
as Shoal, Rotornet, Sirius)

Lo
w
-la
te
nc
y

Bu
lk

Figure 4: A comparison between similarly configured sim-
ulations of Opera and Shale with 576 nodes. Under Opera,
long flows are penalized due to long timeslots (over 8000 ns)
and use of RotorLB with a large number of nodes. Shale’s
far shorter timeslots (∼5ns) leverage rapidly-reconfiguring
switches to enable low latencies for short flows without these
compromises.

latency equivalent to 2 epochs, or 2ℎ(ℎ
√
𝑁 − 1) timeslots. Because

of the use of VLB, flow is well-distributed throughout the network
on average for all workloads, leading to a worst-case throughput
guarantee of 1

2ℎ times line rate.

3.2 Handling Multiple Traffic Classes
3.2.1 Existing approaches. Existing attempts to add support
for multiple traffic classes to ORNs were motivated by the slow
reconfiguration times of existing optical circuit-switched technol-
ogy, which can penalize the completion times of short flows when
used with ORNs. Opera [26] attempts to resolve this problem by
running a single round-robin schedule in parallel using multiple
transceivers at each node. Under Opera’s schedule, at every point
in time, nodes are connected in a random expander graph. Each
configuration is held for several microseconds, allowing short flows
to be routed using multiple hops in a single expander topology.
Meanwhile, long flows are sent using the RotorLB transport pro-
tocol, which attempts to send traffic only when the source node is
directly connected to the destination. For unbalanced workloads,
RotorLB sends indirectly using VLB.

While this approach completely removes the effect of reconfigu-
ration delay from short flow latencies (allowing it to outperform
pure ORNs for the shortest flows), it also forces the use of long
timeslots during which nothing is reconfigured. This is because
each circuit configuration must be held at least as long as an end-
to-end RTT, ideally longer to ensure most short-flow packets make
it to their destination before a reconfiguration. Due to the speed
of light, this duration can be orders of magnitude longer than the
timeslot lengths that would otherwise be possible with new, rapidly-
reconfiguring switches. When rapidly-reconfiguring switches are
available, Opera has the effect of supporting low latencies at the
expense of exacerbating certain scalability issues in the SRRD.

Figure 4 shows a comparison between Shale with ℎ = 1 (using
the same schedule as systems like Rotornet, Shoal, and Sirius), and
Opera using similar 576-node configurations. We describe our Shale
simulator setup, as well as the heavy-tailed workload used here,
in Section 5, and use the publicly available Opera simulator [28]

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia D. Amir, N. Saran, T. Wilson, R. Kleinberg, V. Shrivastav, H. Weatherspoon

with minor modifications to enable a similar simulation setup3. For
Opera, we use the same 15MB bulk flow cutoff as was used in its
original evaluation when testing this workload [26]. Both Shale
and Opera are configured with a total aggregate bandwidth of 400
Gbps at each node and a propagation delay of 500 ns. While Shale
is able to use a timeslot length of only 5.632 ns, Opera must hold
each of its configurations for 8167 ns.

Due to RotorLB, bulk flows are heavily penalized by Opera, ex-
periencing tail FCTs nearly 400 times slower than if they were sent
directly to the destination at line rate. This is because in this system
size, a node with a bulk flow to send will only be connected to the
destination 1

575 of the time, a problem which will only worsen with
system size. This slowing of long flows imposes a severe scalability
limitation and makes RotorLB impractical for very large systems.

At the same time, one of the advantages of RotorLB is that bulk
traffic can be primarily buffered in the end-host’s networking stack
until a direct path is available. Abandoning this approach requires
buffering traffic at intermediate nodes. However, as timeslot lengths
increase, the amount of traffic that must be buffered similarly in-
creases. This greatly increases the memory requirements to run
such a system, compounding the high resource utilization imposed
by scaling up SRRD-based systems (demonstrated in Figure 7).

Note that in Figure 4, the longest flows have a decreasing size-
normalized FCT. This behavior also appeared in the original evalu-
ation of Opera [26]. Despite this, for flows 128 MB and above, even
the flow with the lowest size-normalized FCT in Opera was slower
than the highest size-normalized FCT in Shale.

3.2.2 Interleaving. Shale’s tuning parameter ℎ provides multiple
different schedules, each achieving a different tradeoff between
throughput and latency for all traffic. This enables a new method
of supporting multiple traffic classes, which we call interleaving, in
which multiple sub-schedules are combined into a single schedule
which combines their benefits. Each sub-schedule is used as-is
with the routing unmodified, and each cell is routed on only one
sub-schedule, ensuring that the properties of each schedule are
maintained. In its simplest form, interleaving can be achieved by
simply alternating between two different sub-schedules every other
timeslot; for example, every even timeslot could be mapped to
an entry of the higher-throughput ℎ = 2 schedule, while every
odd timeslot could be mapped to an entry of the lower-latency
ℎ = 4 schedule. This allows short flows to be sent on a low latency
schedule while sending long flows on a high throughput schedule,
maximizing the benefits of both. Depending on the workload and
desired performance, different ratios of timeslots can be allocated
to each schedule.

In the future, Shale could even be interleaved with demand-
aware sub-schedules, which may be beneficial for mixed or partially
known demands.

Performance impacts. An interleaved ORN sub-schedule has
increased latency and reduced throughput proportional to the frac-
tion of timeslots allocated to the sub-schedule. For example, a sub-
schedule allocated half of the timeslots will take twice as long to

3Opera’s simulator assumes end-hosts are connected to top-of-rack switches which
actually participate in Opera. To compare to Shale which directly connects end-hosts,
we simulate only one end-host connected to each TOR using a single 400 Gbps link,
and configure each TOR with 8 x 50 Gbps uplinks.

complete each schedule iteration, doubling both the intrinsic la-
tency and the sensitivity to queuing. However, propagation delay
remains unaffected, and the degree of queuing in a low-latency
schedule may be reduced if long flows are delegated to a separate,
high-throughput sub-schedule. Similarly, a sub-schedule allocated
half of the timeslots will only be able to support half as much
throughput. However, the total throughput supported across in-
terleaved high-throughput and low-latency sub-schedules will be
greater than that supported by the low-latency schedule run in
isolation. We evaluate multiple interleaved configurations of Shale
in Section 5.2.

3.3 Congestion Control
Although Shale is based on an ORN design that achieves theoreti-
cally optimal intrinsic latency, in practice queuing can contribute
a large fraction of total realized latencies. ORNs are particularly
sensitive to queuing because their schedules empty at a rate of one
cell per schedule iteration, rather than at line rate4. Congestion
control is a core ingredient of Shale.

Shale differs from traditional packet-switched and circuit-switched
networks in ways that make many existing congestion control
mechanisms a poor fit. First, Shale relies heavily on multi-pathing,
which is necessary to achieve good throughput on arbitrary work-
loads in ORNs [4]. These paths overlap in intricate ways, resulting
in complex fate-sharing relationships that frustrate attempts to
address congestion on an end-to-end basis. At the same time, the
fixed size of cells makes it expensive to send short control messages.
Space can be reserved in each timeslot for exclusive use by control
messages, but if they are sent end-to-end, care must be taken to
ensure they do not themselves get congested. Finally, congestion is
likely to occur during all hops in a path - not just on the final hop
due to incast. These differences make congestion control algorithms
developed for packet-switched networks [12, 19, 30] potentially a
poor fit for Shale.

3.3.1 Causes of congestion in Shale. We identify two primary
forms of congestion in Shale: egress and path-collision congestion.

Egress congestion arises when cells with the same destination
accumulate in queues leading to their destination. This can occur
due to incast in which the total sending rate to a destination exceeds
its available bandwidth. If this congestion is not addressed imme-
diately, it quickly results in large amounts of queuing, as multiple
senders can send cells more quickly than they can be delivered.

In Shale, egress congestion can also arise spontaneously due to
the paths taken by cells, even when the destination’s bandwidth is
not exceeded. Randomized spraying ensures that traffic is evenly
distributed between the final links to a given destination on aver-
age. However, during a given time period, some final links may
receive more cells than others. Once a final link develops queuing,
it remains until either fluctuations or congestion control result in
less flow being routed along that link, or the total sending rate to
the destination decreases. Egress congestion is thus likely to be

4 In Shale, increasing ℎ reduces the length of the schedule, allowing queues to drain
faster, but also increases the number of hops, and therefore the number of queues each
cell traverses. Our evaluation shows that with effective congestion control, increasing
ℎ does indeed reduce latency even when congestion is considered.

Shale: A Practical, Scalable Oblivious Reconfigurable Network ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

sustained even in the absence of incast, particularly for heavy-tailed
workloads.

Path-collision congestion arises when cells with unrelated
destinations happen to be enqueued at the same node to send on
the same link. Due to Shale’s use of many indirect paths (required
to achieve good performance [4]), path collisions can occur be-
tween any two source-destination pairs. Unlike egress congestion,
path-collision congestion occurs for all workloads with high uti-
lization. However, because Shale uses many indirect paths for each
flow, long-running flows do not create sustained load on queues
distant from their destination. Path-collision congestion is both less
workload dependent and more transient than egress congestion.

We address egress congestion with our hop-by-hop design. It
extensively modifies an existing congestion control proposed for
the SRRD [39] so that it can operate on Shale’s schedule. We address
path-collisions with our spray-short design, which allows inter-
mediate nodes to slightly deviate from Shale’s routing algorithm
based on their local queue lengths. We refer to the combination of
the two as HBH+spray.

3.3.2 Hop-by-hop congestion control. Existing ORN proposals
based on the SRRD have made use of a hop-by-hop congestion
control design [39]. When an intermediate node receives a cell to
be forwarded, it counts how many cells are currently present in its
send queue to that destination node. When it next connects to the
original sender, it uses space reserved in the cell header to send the
previously measured queue length. Because the queues are FIFO
and empty at a constant rate of one cell per epoch, the queue length
allows the sending node to predict exactly when the previously
sent cell will be forwarded. The sending node then waits that many
epochs before sending a subsequent cell.

This design maintains the following invariant: At each interme-
diate node and at every point in time, there is no more than one cell
enqueued that was received from the same neighboring node and
is intended for the same destination. In the context of the SRRD,
this invariant limits the number of forwarded cells in each queue
to the incast degree of the destination, bounding egress conges-
tion. Additionally, due to the short path lengths used by the SRRD,
path-collision congestion can only occur on the first hop. Thus,
total congestion on each queue is limited to the sum of the outcast
degree of the sender, and the incast degree of the destination.

Extending to Shale. To adapt this into our hop-by-hop design
intended for use in Shale, we make several significant changes. The
first change is necessary to support the longer multi-hop paths
used in Shale. To maintain a similar invariant in this context, inter-
mediate nodes may also need to wait to send particular cells on a
given link. However, it is not always possible to predict in advance
when a node will be able to forward a cell on its next hop. The first
change is thus: rather than sending a queue length immediately
when a cell is received, an intermediate node waits until it actually
does forward the cell, and then sends a token back to the previous
hop. This token gives the previous hop permission to send a new
cell with the same destination via the given intermediate node; such
cells are now eligible to be sent via the given link. Note that after a
cell is sent on its final hop, there is no subsequent hop and thus no
token needs to be generated; cells are always eligible to be sent on
their final hop without regard to tokens.

AA BA

Spray

CC,1

Spray Direct Direct

CC

CC,0 CC,0

CBBB

Figure 5: An example path which a cell might take in ℎ = 2
Shale using hop-by-hop, showing both the hops taken by the
cell and the returned tokens.

To prevent head-of-line blocking due to awaiting tokens, the
second change is to transition away from strictly FIFO queues to
PIEO (Push In Extract Out) queues [35]. These queues allow the
first eligible cell to be extracted, even if it is not the first cell in the
queue. PIEO queues can be efficiently implemented in hardware, as
we demonstrate in our hardware prototype. If there are no eligible
cells in its send queue, a node can instead generate a new cell from
a flow it is sending, assuming that flow is itself eligible.

The third change prevents the possibility of deadlocks. Due to
the arrangement of paths used by Shale, it is possible for a cycle of
nodes to want to send each other cells with the same destination. If
cells are only differentiated based on their destination, this would
form a credit loop, causing a deadlock. To avoid this, hop-by-hop
assigns cells to buckets, with each bucket corresponding to a given
destination and an index representing the number of remaining
spraying hops. A cell’s eligibility is determined based on the bucket
to which it will be assigned at the next hop, and tokens indicate
which buckets have become eligible, rather than which destinations.
This results in a slightly different invariant compared to hop-by-
hop in the SRRD: At each intermediate node and at every point in
time, there is no more than one cell present in each bucket that was
received from the same neighboring node.

This design avoids deadlocks by eliminating cycles between
buckets. In the spraying semi-path, each bucket leads to another
bucket with a lower index, so cycles are not possible. In the di-
rect semi-path, all buckets used have an index of 0. Cycles are
prevented by the fact that each hop leads to a node that matches
more coordinates of the destination.

For an example of how hop-by-hop works in practice, consider
a cell sent from node AA to node CC via the path shown in Figure 5.
When the cell arrives at node BA after its first hop, it is tagged with
the previous hop AA, and because there is one remaining spraying
hop, it is assigned to bucket ⟨CC, 1⟩. Once node BA forwards the
cell on its next hop, it subsequently sends the token ⟨CC, 1⟩ to node
AA at the first opportunity. Following this, node AA may send
another cell to node BA which will be assigned to bucket ⟨CC, 1⟩.

One more change completes the design of hop-by-hop. Because
a single node can generate multiple tokens intended for the same
neighbor in a single epoch in our design, we reserve space in each
cell header for two tokens, ensuring that any backlogs drain quickly.

Impacts. Because hop-by-hop separates cells with different desti-
nations into different buckets, it primarily addresses egress conges-
tion. The invariant maintained by hop-by-hop limits the number of
cells enqueued at each node destined to each destination, bounding
the queue lengths that can be created by egress congestion. In addi-
tion, hop-by-hop sends cells to uncongested destinations before to
congested destinations, improving performance during incast.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia D. Amir, N. Saran, T. Wilson, R. Kleinberg, V. Shrivastav, H. Weatherspoon

The first negative impact of hop-by-hop is an increase in the
size of cell headers. This increased overhead slightly decreases the
achievable throughput for all workloads.

More significant is the potential for hop-by-hop to limit through-
put when the propagation delay is too large relative to the epoch
length. Once a node sends a cell, even if the next hop immediately
forwards it, it still takes at least twice the propagation delay to
receive a token back, which limits the sending rate of cells in the
same bucket. This reduction in sending rate can be prevented by
allowing nodes to send multiple cells before receiving back a token;
we describe this in greater detail in Appendix D.

3.3.3 Spray via short queues. Our second design, spray-short,
targets path-collision congestion. This design modifies Shale’s rout-
ing algorithm slightly: when a node enqueues a cell on a spraying
hop, instead of choosing a random queue in the next phase in which
to enqueue the cell, it instead chooses the one with the fewest en-
queued cells (with ties broken randomly).

Impacts. Enqueuing a cell on a spraying hop in the shortest possible
send queue ensures that it collides with as few other cells as possible.
This reduces the average number of path collisions in the network as
a whole, in turn reducing path-collision congestion. spray-short
may also ensure a more even load across the queues of a given
node, lowering tail queue lengths and reducing total queuing at
each node.

Because spray-short only uses locally available information at
each node to decide which spraying hop to take, it adds no addi-
tional overhead to cell headers. However, spray-short modifies
the routing algorithm to no longer be oblivious, departing from the
theoretical model used in [4] and potentially breaking the through-
put guarantee. When using spray-short, flow is not guaranteed
to be evenly distributed among spraying hops, even on average.
Depending on the workload, some links might be largely avoided
as spraying hops due to heavy load by traffic on direct hops. When
combined with hop-by-hop, spray-shortmight cause uneven fan-
in near destination nodes, increasing hop-by-hop’s sensitivity to
propagation delay (described in Section 3.3.2).

Despite these theoretical possibilities, we did not observe any
throughput reduction due to spray-short in our experiments. Re-
alizing a sustained reduction in thoughput due to spray-short
would require many flows to interact with each other such that for
each flow, a small set of suboptimal spraying hops reliably have
the shortest queues when cells from that flow arrive at intermedi-
ate nodes. This highly specific interaction appears to be extremely
unlikely in practice, especially over a sustained period. We leave
further theoretical investigation to future work.

3.4 Failures
In order to support arbitrary workloads with good performance,
ORNs must route traffic via a large number of indirect paths, as
discussed in Section 3. As a result, a single failure in Shale impacts all
flows, as cells must avoid paths that traverse the failed node or link.
To achieve this, failures must be both detected and communicated
throughout the system. We accomplish this through an extension
of hop-by-hop.

To detect failures in Shale, note that every epoch, each node
both sends and receives a cell from each of its neighbors. If a node

𝑖 does not receive a cell from a neighboring node 𝑗 , it assumes that
either the node or the link is failed. Once node 𝑖 establishes that a
failure has occurred, it immediately stops sending cells to node 𝑗 ,
ensuring symmetric detection of link failures in case both nodes
are still otherwise active.

To communicate information about failed links (and by extension,
failed nodes), we introduce invalidation tokens and re-validation
tokens. These tokens have the same format as the regular tokens
used by hop-by-hop, and can be sent using the same portion of
the header by adding two bits to differentiate them. Nodes send
invalidation tokens to neighbors to indicate that they have no valid
route for cells belonging to a given bucket. A re-validation token
reverses the effect of a previously-sent invalidation token.

For buckets with zero remaining spraying hops, which corre-
spond to direct hops, a node can send a single invalidation token to
communicate all destinations that cannot be reached through direct
semi-paths due to a single failed link. This is possible because of
the fact that direct semi-paths are deterministic and form a tree. An
invalidation token of the form 𝑗, 0 invalidates all direct semi-paths
to node 𝑗 itself, as well as to all child nodes of 𝑗 in this tree.

Nodes use information gained from invalidation tokens to spray
cells down paths that avoid failed links. We expand on this design
in Appendix A.

Performance under failures. Routing around unusable paths
can impact the throughput of remaining flows, especially those
whose source or destination shares a phase group with a failed
node. Fortunately, recent theoretical work [49] has shown that
as long as failed nodes are well-distributed, with no more than ℎ

nodes missing from any given phase group, Shale’s throughput
guarantee is only reduced by a small factor. Performance can be
maintained under arbitrary failures by occasionally exchanging the
coordinates of failed nodes in order to ensure an even distribution.
In Section 5.4, we show that even when up to 8% of nodes are failed,
Shale maintains high throughput for the remaining nodes.

4 IMPLEMENTATION
We implement an FPGA-based prototype for Shale’s end-host in
Bluespec System Verilog [7], a high-level hardware description
language that compiles to Verilog. Our prototype targets Terasic
DE5-Net boards [44] comprising the Altera Stratix V FPGA [43],
234 K Adaptive Logic Modules (ALMs), 52 Mbits (6.5 MB) SRAM,
and four 10 Gbps network ports.

4.1 End-host Design
One of the main challenges of implementing Shale’s congestion
control mechanism is that under hop-by-hop, nodes must send the
first eligible enqueued cell, even if this cell is not at the head of the
queue. We accomplish this with per-neighbor PIEO (Push In Extract
Out) queues [35–37], which efficiently implement this capability.
We store the contents of cells to be forwarded in per-phase, per-
bucket FIFO queues which can be stored in DRAM, allowing us to
store just the bucket IDs in the PIEO queues. To ensure efficient
eligibility testing, we store these PIEO queues along with the per-
bucket available token counts in on-chip memory. Finally, we store
a per-neighbor FIFO queue of tokens to be returned. We illustrate
these data structures in Figure 6.

Shale: A Practical, Scalable Oblivious Reconfigurable Network ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

On-Chip
Memory

DRAM

Direct hop queuesSpraying queues

Reorder queues

recv flows

Local flow queues

send flowsPIEO queues

Token return queues

Bucket to
index map

forward
map

reverse
map

Local token counts

Figure 6:Memory layout of end-host implementation. Length
of PIEO and token queues are tunable.

RX Path.When a node receives a cell, it first checks if it is the final
destination of the cell. If it is, it places the cell into a reorder queue
to be delivered to the application. Otherwise, the node determines
whether the cell’s next hop should be a spraying or a direct hop,
and determines the next hop as described in Section 2. It decreases
the remaining spraying hops in the header if needed, and enqueues
the corresponding bucket ID in the PIEO queue for the next hop. It
then writes the cell contents to the FIFO buffer associated with the
cell’s bucket and the phase of the next hop. In parallel, the node
also updates its local token counts to reflect any tokens that were
received in the cell header. These operations take 2 clock cycles in
the critical path.

TX path.At the start of each timeslot, each node updates its current
phase and neighbor, and attempts to dequeue an eligible bucket ID
from the corresponding PIEO queue. If an eligible bucket exists in
the queue, the first such bucket is returned, and the node reads a
cell from the corresponding FIFO. If there is no eligible bucket, but
there is an eligible local flow, it sends a cell from the local flow’s
queue. Otherwise, the node defaults to sending a dummy cell.

Once the cell to be sent is retrieved, the node adds up to 2 tokens
enqueued for the current neighbor to the header, and starts sending.
In total, the operations in the TX path take up to 7 clock cycles in
the critical path. For a detailed breakdown of both the RX and TX
paths, see Appendix C.

4.2 Optimizations
A naive version of our design would store the cells to be forwarded
in per-neighbor, per-bucket FIFO queues. For each bucket and phase,
hop-by-hop ensures that we only receive one cell from each neigh-
bor in the phase. For spraying hops, because all ℎ

√
𝑁 − 1 of these

cells could share the same bucket and next hop, each per-neighbor,
per-bucket queue must individually be capable of holding all of
them. This inflates the memory required by a factor of ℎ

√
𝑁 − 1,

meaning each node must reserve space for a total of ℎ2𝑁 (ℎ
√
𝑁 − 1)2

cells across all neighbors and buckets. We use two optimizations to
dramatically reduce this memory requirement.

For our first optimization, we observe that for spraying hops,
per-bucket queues can be shared across all neighbors in a given
phase. This resolves the factor ℎ

√
𝑁 − 1 over-allocation of memory

described in the previous paragraph. Note that because cells on
their spraying hops can be sent via any neighbor in the same phase,
this optimization does not affect the correctness of the routing
algorithm. While this optimization does not apply to direct hops, all
direct hops to the same destination received from the same phase

5000 10000 15000 20000 25000
N

16 kB

128 kB

1 MB

8 MB

64 MB

512 MB

4 GB

O
n
-c

h
ip

 m
e
m

o
ry

 n
e
e
d
e
d

Total On-chip Memory Requirement

Shoal (similar schedule to
Rotornet, Sirius, Shale h= 1)

Shale (h= 2)

Shale (h= 4)

Figure 7: On-chip memory required by Shoal (representative
of Rotornet and Sirius due to similar schedules and routing)
and Shale for ℎ = 2 and ℎ = 4.

will use the same next hop anyway. This optimization reduces the
total memory across all buckets and phases to ℎ2𝑁 (ℎ

√
𝑁 − 1).

Our second optimization uses the fact that empirically in our
simulations, at any node and at any time, only a small fraction of
the ℎ𝑁 total possible buckets are active (with enqueued cells or
outstanding tokens). Therefore, we only allocate cell buffers and
token storage for a limited number of active buckets, set by the
parameter 𝐴. To allocate indices, we use a freelist bitmap and a
priority encoder. We store the mapping from bucket IDs to active
bucket indices using a size ℎ𝑁 array, and the reverse mapping using
a size 𝐴 array. This reduces the memory required for cell buffers to
2𝐴ℎ(ℎ

√
𝑁 − 1) cells, and for local token counts to 𝐴ℎ(ℎ

√
𝑁 − 1).

4.3 Hardware Resource Scaling
An important concern for Shale’s scalability is its memory usage,
both on-chip and in DRAM. Assuming each node has at most 𝐴
active buckets at a time, at most 𝑄𝑃 bucket IDs enqueued in each
PIEO queue, and at most𝑄𝑇 tokens enqueued to return to neighbors,
the total on-chip memory required by Shale is O(ℎ(ℎ

√
𝑁 − 1) (𝑄𝑃 +

𝑄𝑇 +𝐴) + ℎ𝑁). Additionally, as described in the previous section,
Shale allocates space in DRAM to store 2𝐴ℎ(ℎ

√
𝑁 − 1) cells to be

forwarded to the next hop.
Shale’s most significant compute requirements stem from its use

of PIEO queues, which use priority encoders for eligibility testing
and rank comparison. Because we only dequeue from one PIEO
queue at a time, multiplexers can be used to share a single set of
priority encoders across all PIEO queues at the same node, ensuring
scalability on this front.

Figure 7 shows how Shale’s memory requirements scale com-
pared to existing designs, using Shoal [39] as a representative ex-
ample. Shale’s memory requirements are based on the maximum
number of active buckets and PIEO queue length observed in our
scalability experiments (Section 5.5), which are both doubled to
account for other potential workloads. The disparity in memory
requirements is due to Shale’s reduced epoch length, which reduces
the number of neighbors. Additionally, our memory optimizations
(which in practice do not transfer well to existing schedules) allow
us to reduce the amount of on-chip memory required per neighbor.

Takeaways. Shale with ℎ > 1 uses orders of magnitude fewer
hardware resources at datacenter scales than existing ORNs such
as Rotornet, Sirius, and Shoal.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia D. Amir, N. Saran, T. Wilson, R. Kleinberg, V. Shrivastav, H. Weatherspoon

5 EVALUATION
We evaluate Shale using a custom packet-level simulator. In our
simulation setup, end-hosts are equipped with a 400 Gbps network
interface composed of eight 50 Gbps lanes, a configuration used by
current 400 Gbps interfaces [31]. We assume a slot time of 45.056
ns, composed of 40.96 ns of usable slot time, followed by a 4.096 ns
guard band. The usable slot time of 40.96 ns, combined with the per-
lane bandwidth of 50 Gbps, results in a total cell size of 256 bytes.We
reserve 12 bytes of each cell for the cell header, resulting in a payload
of 244 bytes. Similar to [39], we take advantage of the eight lanes
offered by each link to connect to neighbors in parallel, allowing a
new timeslot to begin every 5.632 ns on average. The bandwidth
of each lane, as well as size of the guard band, are achievable by
an optical ORN based on tunable lasers, as demonstrated in [5].
To approximate a datacenter-scale network, we use a propagation
delay of 0.5 𝜇s, or 89 timeslots, and simulate 10,000 nodes except
where otherwise specified.

We use synthetic workloads with flow sizes modeled after pub-
lished datacenter traces. Flows arrive according to a Poisson process,
and sources and destinations are chosen with uniform probability
across all nodes. The first workload [6], which we call the short flow
workload, uses the flow size distribution reported in a measurement
study of production datacenters. The largest flow size in this work-
load is 3 MB, and it produces primarily path-collision congestion.
We run its simulations for 2 million timeslots. The second workload
[14], which we call the heavy-tailed workload, mimics a data mining
workload. This workload features flow sizes of up to 1 GB, and
thus produces significant levels of egress congestion. We run its
simulation for 50 million timeslots.

To demonstrate performance under high utilization, we run our
workloads at load factors near the theoretical throughput guarantee.
The load factor 𝐿 is defined as the average sending rate at each
node, divided by the total available bandwidth at each node. On
ℎ = 2, we use a load factor of 𝐿 = 0.24, while on ℎ = 4 we use
𝐿 = 0.12, approaching the throughput guarantee of each.

In order to evaluate performance across a wide range of flow
sizes, we normalize each flow’s completion time based on its size.
For a flow with a length of 𝐹 cells in a system with a propagation
delay of 𝑃 timeslots, the amount of time it would take to transmit
the flow at line rate across one hop is 𝐹 +𝑃 . We divide the actual flow
completion time 𝑡 by this value to compute the size-normalized
FCT, 𝑡

𝐹+𝑃 . After normalizing each individual flow’s FCT, we divide
flows into buckets based on their flow size and compute statistics
independently for each bucket.

5.1 Hardware Prototype and Simulator
We begin by validating both our hardware prototype and our packet-
level simulator by simulating identical permutation workloads on
both, shown in Figure 8. To ensure that the hardware simulation
is tractable, we simulate only 16 end hosts, using both ℎ = 2 and
ℎ = 4 schedules. We simulate our hardware prototype using the
ModelSim FPGA simulator [29]. Our simulation uses a clock speed
of 156.25 MHz (resulting in a clock cycle of 6.4 ns) and 10 Gbps
links, as found on the Terasic DE5-Net board equipped with Altera
Stratix V FPGA [43]. To connect the nodes, we also implement a
switch which connects these nodes according to Shale’s connection

Figure 8: Throughput and queuing for the hardware proto-
type compared to packet simulations.

0-4kB

4-16kB

16-64kB

64-256kB

256kB
-1MB

1-4MB

4-16MB

16-64MB

64MB+

Flow size

0

250

500

750

1000

1250

Interleaving h=2 and h=4

s=0%, L=0.24

s=20%, L=0.216

s=40%, L=0.192

s=50%, L=0.18

s=100%, L=0.12

0-4kB

4-16kB

16-64kB

64-256kB

256kB
-1MB

1-4MB

4-16MB

16-64MB

64MB+

Flow size

0

250

500

750

1000

1250

9
9

.9
%

 F
C

T
 (

si
ze

-n
o
rm

a
liz

e
d
) Interleaving h=1 and h=4

s=0%, L=0.48
(Shoal,Rotornet,Sirius)

s=20%, L=0.408

s=40%, L=0.336

s=50%, L=0.27

s=100%, L=0.12

Figure 9: Size-normalized FCTs for the heavy-tailed work-
load under various interleaved schedules. 𝑠 is the portion of
timeslots allocated to the ℎ = 4 subschedule, while 𝐿 is the
load factor used for each schedule.

schedule. We simulate a propagation delay of 2.5 𝜇s and use 512B
cells. All hosts are synchronized to the same clock. Accounting for
overheads, we begin a new timeslot every 68 cycles, resulting in an
available bandwidth of 9.412 Gbps.

Takeaways. Both our hardware prototype and packet simulator
achieve almost exactly the same throughput and maximum queue
lengths in these simulations (the differences are due to different ran-
domization in spraying). For both ℎ = 2 and ℎ = 4, the throughput
is above the theoretical guarantee of 2.353 Gbps and 1.176 Gbps, re-
spectively. This helps confirm that both are correctly implemented,
and that the hardware optimizations described in Section 4.1 do
not impact correctness.

5.2 Interleaving
Figure 9 shows the results of simulating the heavy-tailed work-
load on various interleaved schedules with 10,000 nodes. For each
schedule, the 𝑠 parameter indicates what portion of the timeslots
are used by the higher-ℎ sub-schedule, which is used by short flows.
Longer flows are sent on the lower-ℎ sub-schedule which uses the
remaining timeslots. The cutoff length is chosen to allow equiva-
lent utilization of both for our given workload. Here, we run each
schedule at almost the theoretical throughput limit, demonstrating
increased throughput with interleaving. Note that when 𝑠 = 100%,
the higher-ℎ sub-schedule is used for all traffic, and when 𝑠 = 0%,
only the lower-ℎ sub-schedule is used. For ℎ = 1, the schedule is
identical to Rotornet, Shoal, and Sirius.

Interleaving allows the lower short-flow latencies of higher-ℎ
schedules to be achieved while supporting much higher through-
put. As fewer timeslots are allocated to the higher-ℎ subschedule,
the time taken for each subschedule iteration increases, usually re-
sulting in longer latencies. At the same time, the reduced flow-size

Shale: A Practical, Scalable Oblivious Reconfigurable Network ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

cutoff means that more flows are allocated to the low-ℎ subschedule
instead. This can occasionally improve latency in the higher-ℎ sub-
schedule, as with the 𝑠 = 40% schedule outperforming the 𝑠 = 50%
schedule when interleaving ℎ = 1 and ℎ = 4 on this workload.

Takeaways. Interleaving allows Shale to simultaneously and scal-
ably achieve high throughput and low latency. Depending on the
specific requirements, network operators can choose an interleav-
ing that balances latency and throughput.

5.3 Congestion Control Mechanism
We first evaluate our congestion control mechanisms, demonstrat-
ing the effectiveness of the combined HBH+spray.

Baselines.We use four alternative mechanisms as baselines.

(1) none provides a baseline of Shale with no additional congestion
control. Shale implicitly prioritizes forwarded cells over newly
originated cells, providing a primitive admission control (which
remains active in other designs).

(2) priority provides a baseline of Shale with in-network sched-
uling. Prior works [3] have shown that sending packets from
shortest flow first results in near-optimal mean flow completion
times. In priority, when a cell arrives at a node, it is assigned a
priority value 𝑝 = 𝑡 + ℓ ∗𝐸 based on its arrival time 𝑡 , the overall
size ℓ of the flow to which it belongs (preventing starvation),
and the epoch length 𝐸. Cells with lower priorities are sent first.

(3) ISD (Idealized Sender-Driven) provides a very optimistic upper
bound for the performance achievable by an end-to-end sender-
driven congestion control mechanismwhich aims to achieve fair
sharing between senders, such as the TCP suite of algorithms.
In this design, nodes have clairvoyant, up-to-date knowledge
of how many flows are currently being sent to each destination
in the network. Whenever a node starts or finishes sending a
flow, the global view of flows is immediately updated for all
nodes. Nodes limit their sending rate to ensure that the total
amount of traffic being sent to each receiver does not exceed a
maximum bandwidth 𝑅. We use an 𝑅 of 1.25

2ℎ , a low value that
still allows the throughput bound to be reached.

(4) RD and NDP are both based on the receiver-driven transport
protocol used by NDP [19], but simplified to only use PULL
messages. NDP also uses packet trimming, providing a close
approximation to NDP within the context of Shale. As with
hop-by-hop, this protocol reserves a portion of each timeslot
to send small control messages. However, here control messages
are sent end-to-end using the same routing as regular cells. To
reduce the queuing encountered by these control messages,
only one PULL message is sent for every 20 cells received from
each sender.

NDP has good performance when used with packet spraying
on packet-switched networks. In this environment, queuing is al-
most exclusively due to incast, occuring in the queue between the
destination TOR and end-host [19]. This greatly differs from Shale,
where queuing can occur throughout the path. For our NDP, we use
a maximum queue length of 100 to prevent too many cells from
being dropped and reducing throughput due to retransmissions.
Despite this conservative cutoff, when running the heavy-tailed
workload under ℎ = 4, over 3% of packets are dropped.

0-4kB

4-16kB

16-64kB

64-256kB

256kB
-1MB

1-4MB

Flow size

0

200

400

600

800

1000

9
9

.9
%

 F
C

T
 (

si
ze

-n
o
rm

a
liz

e
d
)

none
prio ISD RD

NDP

sp
ra

y-s
hort

hop-by-h
op

HBH+sp
ra

y
0

1000

2000

3000

4000

9
9

.9
9

%
 b

u
ff

e
r

o
cc

u
p
a
n
cy

 (
ce

lls
) h=2

none

prio

ISD

RD

NDP

spray-short

hop-by-hop

HBH+spray

0-4kB

4-16kB

16-64kB

64-256kB

256kB
-1MB

1-4MB

Flow size

0

200

400

600

800

1000

none
prio ISD RD

NDP

sp
ra

y-s
hort

hop-by-h
op

HBH+sp
ra

y
0

1000

2000

3000

4000

h=4
Short flow workload — N=10,000

Figure 10: Buffer occupancies and normalized flow comple-
tion times for the short flow workload.

Short flow workload.We begin by examining the performance
of our various congestion control mechanisms and baselines using
the short flow workload, which primarily creates path collision
congestion.

The lower graphs in Figure 10 show the FCTs achieved by various
congestion control mechanisms for the short flow workload. As
expected, spray-short is quite effective at improving tail flow
completion times for all flow size categories. While hop-by-hop on
its own is not well-suited for this workload, as it mainly addresses
egress congestion, it still limits queuing, especially for ℎ = 4. The
best queuing and FCTs are achieved by the combined HBH+spray.

priority’s scheduling policy optimizes mean flow completion
time [3] (For mean FCT graphs, see Appendix B.1); here, this comes
at the expense of tail latency. ISD and RD are clearly mismatched
with this workload, having only marginal differences compared to
none. This demonstrates the need to address path-collision conges-
tion using in-network interventions, rather than end-to-end rate
limiting. While NDP performs decently in this test, it is not quite
as effective as spray-short and HBH+spray. Even though NDP had
a lower maximum queue length than spray-short for both ℎ = 2
and ℎ = 4 (for queue length graphs, see Appendix B.2), many more
queues reach near this maximum length. This made cells more
likely to encounter long queuing delays.

In some of the lines in these graphs, the normalized FCT for
4-16 kB flows is longer than for 0-4 kB flows. For both of these
flow sizes, the FCT is dominated by the latency of the most-delayed
cell. When the cell latency distribution has an especially long tail,
4-16 kB flows are more likely to sample deep into this tail, resulting
in worse tail FCTs.

The top two graphs in Figure 10 show the tail buffer occupancies,
or total number of enqueued cells, at each node over the course
of the simulation. As with flow completion times, spray-short is
highly effective at reducing buffer occupancy for this workload.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia D. Amir, N. Saran, T. Wilson, R. Kleinberg, V. Shrivastav, H. Weatherspoon

none
prio ISD RD

NDP

sp
ra

y-s
hort

hop-by-h
op

HBH+sp
ra

y
100

101

102

103

104

105

106

9
9

.9
9

%
 b

u
ff

e
r

o
cc

u
p
a
n
cy

 (
ce

lls
) h=2 (log scale)

none

prio

ISD

RD

NDP

spray-short

hop-by-hop

HBH+spray

0-4kB

4-16kB

16-64kB

64-256kB

256kB
-1MB

1-4MB

4-16MB

16-64MB

64MB+

Flow size

100

101

102

103

104

105

0-4kB

4-16kB

16-64kB

64-256kB

256kB
-1MB

1-4MB

4-16MB

16-64MB

64MB+

Flow size

100

101

102

103

104

105

9
9

.9
%

 F
C

T
 (

si
ze

-n
o
rm

a
liz

e
d
)

none
prio ISD RD

NDP

sp
ra

y-s
hort

hop-by-h
op

HBH+sp
ra

y
100

101

102

103

104

105

106
h=4 (log scale)

Heavy tailed workload — N=10,000

Figure 11: Buffer occupancies and normalized flow comple-
tion times for the heavy-tailed workload.

Combining with hop-by-hop results in even lower buffer occu-
pancy, particularly for ℎ = 4.

Finally, we measured throughput over the course of the work-
load. For this workload, following an initial ramp-up period, all
mechanisms achieved average throughput within 2.5% of 𝐿, the
target load. In particular, spray-short does not negatively affect
the throughput of this workload.

Heavy-tailed workload. This workload produces considerable
egress congestion, leading to FCTs and queuing differing by mul-
tiple orders of magnitude between different congestion control
mechanisms.

The lower graphs in Figure 11 show tail FCTs. For this workload,
hop-by-hop is effective at reducing tail latencies. In particular,
short flows have their FCTs reduced by 2-3 orders of magnitude
compared to none. HBH+spray brings an additional improvement.
In particular, for ℎ = 4, HBH+spray achieves tail normalized FCTs
of under 24 for short flows. Because of ℎ = 4’s use of 8-hop paths,
this is within 3x of the theoretical limit without queuing. For ℎ = 2,
while HBH+spray limits queuing, tail latencies are slightly higher
than for NDP and significantly higher than the idealized ISD. This
is due to cases where short flows are incasted with long flows.
hop-by-hop treats all cells to the same destination identically, so
cells from short flows experience the same egress congestion as cells
from incasted long flows; we discuss this further in Appendix B.3.

The top graphs in Figure 11 show the observed tail buffer oc-
cupancy. While spray-short is able to slightly reduce tail buffer
occupancies, by maintaining its queuing invariant, hop-by-hop is
able to reduce them by several orders of magnitude, outperforming
both RD and NDP. HBH+spray achieves even better performance: for
ℎ = 4, nodes at the 99.99th percentile had fewer than 100 cells
enqueued in total.

Takeaways. Shale’s congestion control, HBH+spray, outperforms
all of our baselines on both the short flow workload, and on the

Figure 12: Throughput achieved with 10K nodes under fail-
ures, and the lower bound without failures.

N=4096

N=6561

N=10000

N=14641

N=20736

N=28561

N=38416

N=50625
0

25

50

75

100

N=4096

N=6561

N=10000

N=14641

N=20736

N=28561

N=38416

N=50625
0

25

50

75

100

M
a
x
 P

IE
O

 q
u
e
u
e
 l
e
n
g
th

N=4096

N=6561

N=10000

N=14641

N=20736

N=28561

N=38416

N=50625
0

500

1000

h=4

N=4096

N=6561

N=10000

N=14641

N=20736

N=28561

N=38416

N=50625
0

500

1000

M
a
x
im

u
m

 a
ct

iv
e
 b

u
ck

e
ts

h=2

0-4kB

4-16kB

16-64kB

64-256kB

256kB
-1MB

1-4MB

Flow size

0

50

100

150

200
N=4096

N=6561

N=10000

N=14641

N=20736

N=28561

N=38416

N=50625

0-4kB

4-16kB

16-64kB

64-256kB

256kB
-1MB

1-4MB

Flow size

0

50

100

150

200

9
9

.9
%

 F
C

T
 (

si
ze

-n
o
rm

a
liz

e
d
)

Figure 13: Active buckets, queue lengths, and FCTs for the
short flow workload as system size scales.

heavy-tailed workload when ℎ = 4. In the latter case, HBH+spray
achieves over an order of magnitude better short flow FCTs and
buffer occupancy than NDP. For the heavy-tailed workload on ℎ = 2,
it is only significantly outperformed by the idealized ISD baseline.

5.4 Performance under Failures
We evaluate the effect of node failures on throughput for 10K nodes
with Shale ℎ = 2, 4. We use a synthetic workload consisting of
10 overlaid permutation traffic matrices to specifically benchmark
the effect on throughput. Our permutations do not include the
failed nodes, ensuring that we properly measure the throughput
achievable by the remaining nodes. We run this simulation for 2
million timeslots and report the average destination throughput
over the course of the run. Figure 12 shows the results of our
experiment.

Takeaways. Under node failures, throughput is reduced roughly
in proportion to the number of failed nodes. As long as most nodes
are active, good throughput is maintained.

Shale: A Practical, Scalable Oblivious Reconfigurable Network ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

5.5 Scalability
To demonstrate the scalability of Shale, we consider two metrics: (i)
the hardware resource requirements to buffer packets and (ii) the
tail flow completion times. We simulate the short flow workload
with systems of various sizes between 4,096 nodes and 50,625 nodes,
as shown in Figure 13. The top graphs show the maximum number
of active buckets and maximum PIEO queue length observed, two
important values for determining the hardware resources required
(as discussed in Section 4.3). The bottom graphs show the 99.9%
size-normalized FCTs.

Even when scaling system size by over an order of magnitude,
ℎ = 2 Shale only uses 2.5 times more active buckets, and PIEO
queue lengths appear to plateau. ℎ = 4 Shale is even more recource
efficient, with the number of active buckets remaining nearly flat,
and queue lengths increasing by only around 50%. For ℎ = 2, there
is at most a 2x increase in short-flow FCTs, while for ℎ = 4, Shale
maintains almost exactly the same short flow latencies.

Takeaways. Shale has exceptional scalability. Both latencies and
hardware resource requirements are similar even when scaling the
system size by over an order of magnitude, especially for ℎ = 4.

6 RELATEDWORK

Existing ORN designs. RotorNet [27] proposes a datacenter-wide
ORN based on Rotor switches, a form of optical circuit switch that
requires committing to a fixed schedule. Prototype Rotor switches
were demonstrated with a reconfiguration time of 150 𝜇s, but it was
argued that 10 𝜇s should be possible for a production switch. Sir-
ius [5] evolves on RotorNet by using tunable lasers and diffraction
gratings to reconfigure the network far more rapidly, achieving a
guard band of only 3.84 ns. Shoal [39] proposes an electronic ORN
within a resource-disaggregated rack. By using circuit switches,
Shoal reduces power consumption compared to packet switches,
supporting 100s of nodes in a single rack.

While there has been clear progress in improving the hardware
capabilities and reach of ORNs, these designs all use a schedule
and routing scheme similar to the one described in Section 2. As
a result, all of these systems have poor latency scalability. Shale
represents a major step forward for ORNs by introducing a tunable
tradeoff between throughput and latency. Because it is agnostic to
the specific hardware implementation, Shale can extend all three
of these designs, enabling them to scale to far larger environments.

Opera [26] uses greatly expanded timeslots, configuring the
network as a new expander graph during each timeslot, allowing
latency-sensitive traffic to be routed via multiple hops on a single
configuration. We discuss the consequences of this design and com-
pare it to interleaving in Shale in Section 3.2.1. Cerberus [15] uses a
derivative of the Rotornet ORN design as one component of an opti-
cal datacenter network, along with demand-aware reconfiguration
and static graphs. This demonstrates the potential of using ORNs
as a building block of demand-aware networks, as we propose to do
with interleaving. MARS [1] analyzes ORNs through the properties
of the time-collapsed connection graph, and uses this to derive
a tradeoff between throughput and buffering of forwarded cells.
However, as with [4] it does not consider the effects of queuing at
intermediate nodes.

Non-oblivious reconfigurable networks. Hybrid networks such
as Helios [11] and c-Through [47] combine packet switches and
MEMS-based optical circuit switches to build low cost, high band-
width datacenter networks. These works rely on a central controller
to periodically reconfigure the optical circuit switch based on the
current traffic demand. Jupiter Evolving [33] augments a traditional
datacenter network by connecting machine aggregation blocks
with optical switches. These switches reconfigure infrequently, and
use traffic engineering to ensure efficient use of the resulting direct-
connect topology. TopoOpt [48] uses optical switches to create an
optimized direct-connect topology for DNN model training, and
customizes the all-reduce algorithm to best match the resulting
topology. The recent Lightwave Fabrics paper [24] combines both
an in-chip-interconnection and a datacenter-wide optical network
to create optimized fixed topologies for machine learning jobs.
These works demonstrate the incredible potential of optical circuit
switches, but require extensive knowledge or even engineering of
workloads, reducing their flexibility compared to ORNs.

Ethernet flow control. Ethernet flow control attempts to prevent
packet loss, creating a lossless link layer. Ethernet flow control at-
tempts to prevent packet loss, creating a lossless link layer. PAUSE
frames [41] allow an overloaded node to request that its neighbors
pause sending. This pause affects all traffic, potentially creating
new congestion at previous hops which can cascade throughout
the network [34]. Priority Flow Control, or PFC [42], allows sepa-
rate pausing of 8 traffic classes, but otherwise suffers from similar
weaknesses. Thanks to Shale’s highly regular schedule and rout-
ing, we show that it is practical to avoid head-of-line blocking in
hop-by-hop, avoiding these issues.

Asynchronous TransferMode (ATM).ATMnetworks operate us-
ing virtual circuits, in which end hosts must negotiate a path before
sending traffic. Under credit-based congestion control [20], ATM
switches implemented flow control on a per-virtual-circuit basis,
with nodes exchanging credits to indicate free buffer space, similar
to tokens in hop-by-hop. By maintaining credit per-destination,
hop-by-hop is able to achieve similar isolation capabilities to credit-
based congestion control while being coordination free.

7 CONCLUSION
In this paper, we introduced Shale, a practical, scalable ORN de-
sign. Shale generalizes existing ORN designs to achieve a tunable
tradeoff between throughput and latency scaling that is Pareto op-
timal among all ORN designs (up to a constant factor). We show
that by interleaving multiple tunings in parallel, both latency- and
throughput-sensitive flow can be routed on the most advantageous
schedule. In order to deliver low latency, we developed hop-by-hop
and spray-short, two congestion control mechanisms that syn-
ergize with each other to provide a complete solution. We imple-
mented an FPGA-based prototype end-host, showing that Shale
can scale to datacenter-sized networks while using orders of mag-
nitude fewer hardware resources than existing ORN designs. We
also extended Shale’s congestion control to communicate node and
link failures, and showed that Shale continues to operate well even
under failures. Shale’s design is agnostic to the specific switching
technology, and thus enables ORNs in all domains to be scaled to
larger network sizes than would be practical with existing designs.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia D. Amir, N. Saran, T. Wilson, R. Kleinberg, V. Shrivastav, H. Weatherspoon

AVAILABILITY
Our packet-level Shale simulator and FPGA end-host prototype are
available under an open-source license at https://reconfigurable-
networks.github.io/.

ACKNOWLEDGMENTS
Wewould like to thank our shepherd, Hitesh Ballani, and our anony-
mous reviewers for their extensive and constructive feedback. This
work was supported in part by NSF grants CHS-1955125, DBI-
2019674, CNS-2331111, CAREER-2239829, CCF-2402851, and CCF-
2402852, a Microsoft Investigator Fellowship, and research awards
from Google and Cisco (23089533).

REFERENCES
[1] Vamsi Addanki, ChenAvin, and Stefan Schmid. 2023. Mars: Near-optimal through-

put with shallow buffers in reconfigurable datacenter networks. Proceedings of
the ACM on Measurement and Analysis of Computing Systems 7, 1 (2023), 1–43.

[2] Slavisa Aleksic. 2010. Electrical Power Consumption of Large Electronic and
Optical Switching Fabrics. 95 – 96. https://doi.org/10.1109/PHOTWTM.2010.
5421958

[3] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. 2013. PFabric: Minimal near-Optimal Data-
center Transport. In SIGCOMM.

[4] Daniel Amir, Tegan Wilson, Vishal Shrivastav, Hakim Weatherspoon, Robert
Kleinberg, and Rachit Agarwal. 2022. Optimal Oblivious Reconfigurable Net-
works. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing (STOC 2022). Association for Computing Machinery, New York, NY,
USA, 1339–1352. https://doi.org/10.1145/3519935.3520020

[5] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Istvan Haller,
Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn Thomsen, et al.
2020. Sirius: A Flat Datacenter Network with Nanosecond Optical Switching. In
Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication. 782–797.

[6] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network Traffic
Characteristics of Data Centers in the Wild. In Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement (IMC ’10). Association for Com-
puting Machinery, New York, NY, USA, 267–280. https://doi.org/10.1145/1879141.
1879175

[7] Bluespec [n. d.]. Bluespec SystemVerilog. http://wiki.bluespec.com/bluespec-
systemverilog-and-compiler. ([n. d.]).

[8] Q. Cheng, A.Wonfor, J. L.Wei, R. V. Penty, and I. H.White. 2014. Demonstration of
the feasibility of large-port-count optical switching using a hybrid Mach-Zehnder
interferometer-semiconductor optical amplifier switch module in a recirculating
loop. Opt. Lett. 39, 18 (Sep 2014), 5244–5247. https://doi.org/10.1364/OL.39.005244

[9] Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian Kash. 2015. R2C2: A Network
Stack for Rack-scale Computers. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication (SIGCOMM ’15). ACM, New York,
NY, USA, 551–564. https://doi.org/10.1145/2785956.2787492

[10] M. Ding, A. Wonfor, Q. Cheng, R. V. Penty, and I. H. White. 2017. Scalable,
low-power-penalty nanosecond reconfigurable hybrid optical switches for data
centre networks. In 2017 Conference on Lasers and Electro-Optics (CLEO). 1–2.

[11] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali
Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin
Vahdat. 2010. Helios: a hybrid electrical/optical switch architecture for modular
data centers. In Proceedings of the ACM SIGCOMM 2010 Conference (SIGCOMM
’10). Association for Computing Machinery, New York, NY, USA, 339–350. https:
//doi.org/10.1145/1851182.1851223

[12] Peter X Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Ratnasamy,
and Scott Shenker. 2015. phost: Distributed near-optimal datacenter transport
over commodity network fabric. In Proceedings of the 11th ACM Conference on
Emerging Networking Experiments and Technologies. 1–12.

[13] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janard-
han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper. 2016. ProjecToR: Agile Reconfigurable Data
Center Interconnect. In Proceedings of the 2016 ACM SIGCOMM Conference (SIG-
COMM ’16). Association for Computing Machinery, New York, NY, USA, 216–229.
https://doi.org/10.1145/2934872.2934911

[14] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: A scalable and flexible data center network. In Proceedings
of the ACM SIGCOMM 2009 conference on Data communication. 51–62.

[15] Chen Griner, Johannes Zerwas, Andreas Blenk, Manya Ghobadi, Stefan Schmid,
and Chen Avin. 2021. Cerberus: The power of choices in datacenter topology
design-a throughput perspective. Proceedings of the ACM on Measurement and
Analysis of Computing Systems 5, 3 (2021), 1–33.

[16] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M. Watson,
Andrew W. Moore, Steven Hand, and Jon Crowcroft. 2015. Queues Don’t Matter
When You Can JUMP Them!. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15). USENIX Association, Oakland, CA, 1–
14. https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/
grosvenor

[17] Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl, and David
Wetherall. 2011. Augmenting data center networks with multi-gigabit wireless
links. In Proceedings of the ACM SIGCOMM 2011 conference. 38–49.

[18] Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R. Das, Jon P.
Longtin, Himanshu Shah, and Ashish Tanwer. 2014. FireFly: A Reconfigurable
Wireless Data Center Fabric Using Free-Space Optics. In Proceedings of the 2014
ACM Conference on SIGCOMM (SIGCOMM ’14). Association for Computing Ma-
chinery, New York, NY, USA, 319–330. https://doi.org/10.1145/2619239.2626328

[19] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-Architecting Datacenter
Networks and Stacks for Low Latency and High Performance. In SIGCOMM.

[20] Raj Jain. 1996. Congestion control and traffic management in ATM networks:
Recent advances and a survey. Computer Networks and ISDN systems 28, 13 (1996),
1723–1738.

[21] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim Weatherspoon. 2016. Glob-
ally Synchronized Time via Datacenter Networks. In Proceedings of the 2016 ACM
SIGCOMM Conference (SIGCOMM ’16). Association for Computing Machinery,
New York, NY, USA, 454–467. https://doi.org/10.1145/2934872.2934885

[22] Sergey Legtchenko, Nicholas Chen, Daniel Cletheroe, Antony Rowstron, Hugh
Williams, and Xiaohan Zhao. 2016. XFabric: A Reconfigurable In-Rack Network
for Rack-Scale Computers. In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16). USENIX Association, Santa Clara, CA, 15–
29. https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/
legtchenko

[23] Jason Lei and Vishal Shrivastav. 2024. Seer: Enabling Future-Aware Online
Caching in Networked Systems. In 21st USENIX Symposium on Networked Systems
Design and Implementation (NSDI 24). USENIX Association, Santa Clara, CA, 635–
649. https://www.usenix.org/conference/nsdi24/presentation/lei

[24] Hong Liu, Ryohei Urata, Kevin Yasumura, Xiang Zhou, Roy Bannon, Jill Berger,
Pedram Dashti, Norm Jouppi, Cedric Lam, Sheng Li, et al. 2023. Lightwave
Fabrics: At-Scale Optical Circuit Switching for Datacenter and Machine Learning
Systems. In Proceedings of the ACM SIGCOMM 2023 Conference. 499–515.

[25] Macom M21605 Crosspoint Switch [n. d.]. Macom M21605 Crosspoint Switch.
https://www.macom.com/products/product-detail/M21605/. ([n. d.]).

[26] William M. Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C. Snoeren,
and George Porter. 2020. Expanding across time to deliver bandwidth efficiency
and low latency. In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 1–18. https:
//www.usenix.org/conference/nsdi20/presentation/mellette

[27] William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George Pa-
pen, Alex C. Snoeren, and George Porter. 2017. RotorNet: A Scalable, Low-
complexity, Optical Datacenter Network. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication (SIGCOMM ’17). As-
sociation for Computing Machinery, New York, NY, USA, 267–280. https:
//doi.org/10.1145/3098822.3098838

[28] William M. Mellette and George Porter. 2020. opera-sim. https://github.com/
TritonNetworking/opera-sim. (2020). https://github.com/TritonNetworking/
opera-sim

[29] Modelsim [n. d.]. ModelSim-Intel® FPGAs Standard Edition Software.
https://www.intel.com/content/www/us/en/software-kit/750637/modelsim-
intel-fpgas-standard-edition-software-version-20-1.html. ([n. d.]).
https://www.intel.com/content/www/us/en/software-kit/750637/modelsim-
intel-fpgas-standard-edition-software-version-20-1.html

[30] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A Receiver-Driven Low-Latency Transport Protocol Using Network Pri-
orities. In SIGCOMM.

[31] QSFP-DD MSA. 2020. QSFP-DD Hardware Specification for QSFP DOUBLE DEN-
SITY 8X PLUGGABLE TRANSCEIVER. http://www.qsfp-dd.com/wp-content/
uploads/2020/08/QSFP-DD-Hardware-rev5.1.pdf. (2020).

[32] George Porter, Richard Strong, Nathan Farrington, Alex Forencich, Pang Chen-
Sun, Tajana Rosing, Yeshaiahu Fainman, George Papen, and Amin Vahdat. 2013.
Integrating Microsecond Circuit Switching into the Data Center. In Proceedings of
the ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13). Association
for Computing Machinery, New York, NY, USA, 447–458. https://doi.org/10.1145/
2486001.2486007

[33] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukarram Tariq,
Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner, Steve Gribble,
et al. 2022. Jupiter evolving: transforming google’s datacenter network via optical

https://reconfigurable-networks.github.io/
https://reconfigurable-networks.github.io/
https://doi.org/10.1109/PHOTWTM.2010.5421958
https://doi.org/10.1109/PHOTWTM.2010.5421958
https://doi.org/10.1145/3519935.3520020
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/1879141.1879175
http://wiki.bluespec.com/bluespec-systemverilog-and-compiler
http://wiki.bluespec.com/bluespec-systemverilog-and-compiler
https://doi.org/10.1364/OL.39.005244
https://doi.org/10.1145/2785956.2787492
https://doi.org/10.1145/1851182.1851223
https://doi.org/10.1145/1851182.1851223
https://doi.org/10.1145/2934872.2934911
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/grosvenor
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/grosvenor
https://doi.org/10.1145/2619239.2626328
https://doi.org/10.1145/2934872.2934885
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/legtchenko
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/legtchenko
https://www.usenix.org/conference/nsdi24/presentation/lei
https://www.macom.com/products/product-detail/M21605/
https://www.usenix.org/conference/nsdi20/presentation/mellette
https://www.usenix.org/conference/nsdi20/presentation/mellette
https://doi.org/10.1145/3098822.3098838
https://doi.org/10.1145/3098822.3098838
https://github.com/TritonNetworking/opera-sim
https://github.com/TritonNetworking/opera-sim
https://github.com/TritonNetworking/opera-sim
https://github.com/TritonNetworking/opera-sim
https://www.intel.com/content/www/us/en/software-kit/750637/modelsim-intel-fpgas-standard-edition-software-version-20-1.html
https://www.intel.com/content/www/us/en/software-kit/750637/modelsim-intel-fpgas-standard-edition-software-version-20-1.html
http://www.qsfp-dd.com/wp-content/uploads/2020/08/QSFP-DD-Hardware-rev5.1.pdf
http://www.qsfp-dd.com/wp-content/uploads/2020/08/QSFP-DD-Hardware-rev5.1.pdf
https://doi.org/10.1145/2486001.2486007
https://doi.org/10.1145/2486001.2486007

Shale: A Practical, Scalable Oblivious Reconfigurable Network ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

circuit switches and software-defined networking. In Proceedings of the ACM
SIGCOMM 2022 Conference. 66–85.

[34] S-A Reinemo, Tor Skeie, Thomas Sodring, Olav Lysne, and O Trudbakken. 2006.
An overview of QoS capabilities in InfiniBand, advanced switching interconnect,
and ethernet. IEEE Communications Magazine 44, 7 (2006), 32–38.

[35] Vishal Shrivastav. 2019. Fast, Scalable, and Programmable Packet Scheduler in
Hardware. In Proceedings of the ACM Special Interest Group on Data Communica-
tion (SIGCOMM ’19). Association for Computing Machinery, New York, NY, USA,
367–379. https://doi.org/10.1145/3341302.3342090

[36] Vishal Shrivastav. 2022. Programmable Multi-Dimensional Table Filters for Line
Rate Network Functions. In Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM ’22). Association for Computing Machinery, New
York, NY, USA, 649–662. https://doi.org/10.1145/3544216.3544266

[37] Vishal Shrivastav. 2022. Stateful Multi-Pipelined Programmable Switches. In
Proceedings of the ACM Special Interest Group on Data Communication (SIGCOMM
’22). Association for Computing Machinery, New York, NY, USA, 663–676. https:
//doi.org/10.1145/3544216.3544269

[38] Vishal Shrivastav, Ki Suh Lee, Han Wang, and Hakim Weatherspoon. 2019. Glob-
ally Synchronized Time via Datacenter Networks. IEEE/ACM Transactions on
Networking 27, 4 (2019), 1401–1416. https://doi.org/10.1109/TNET.2019.2918782

[39] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh Lee, Han
Wang, Rachit Agarwal, and Hakim Weatherspoon. 2019. Shoal: A Network
Architecture for Disaggregated Racks. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). USENIX Association, Boston, MA.
https://www.usenix.org/conference/nsdi19/presentation/shrivastav

[40] Ankit Singla, Atul Singh, and Yan Chen. 2012. OSA: An Optical Switching Archi-
tecture for Data Center Networks with Unprecedented Flexibility. In Presented
as part of the 9th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 12). USENIX, San Jose, CA, 239–252. https://www.usenix.org/
conference/nsdi12/technical-sessions/presentation/chen_kai

[41] IEEE Computer Society. 1997. IEEE Standards for Local and Metropolitan Area
Networks: Specification for 802.3 Full Duplex Operation. IEEE Std 802.3x-1997
and IEEE Std 802.3y-1997 (Supplement to ISO/IEC 8802-3: 1996/ANSI/IEEE Std 802.3,
1996 Edition) (1997).

[42] IEEE Computer Society. 2011. IEEE Standard for Local and metropolitan area
networks–Media Access Control (MAC) Bridges and Virtual Bridged Local Area
Networks–Amendment 17: Priority-based Flow Control. IEEE Std 802.1Qbb-
2011 (Amendment to IEEE Std 802.1Q-2011 as amended by IEEE Std 802.1Qbe-2011
and IEEE Std 802.1Qbc-2011) (2011), 1–40. https://doi.org/10.1109/IEEESTD.2011.
6032693

[43] Stratix V [n. d.]. Intel® Stratix® Series FPGAs and SoCs. https://www.intel.com/
content/www/us/en/products/details/fpga/stratix.html. ([n. d.]). https://www.
intel.com/content/www/us/en/products/details/fpga/stratix.html

[44] Terasic [n. d.]. DE5-Net FPGA development kit. http://de5-net.terasic.com.tw.
([n. d.]).

[45] Leslie G Valiant and Gordon J Brebner. 1981. Universal schemes for parallel
communication. In Proceedings of the thirteenth annual ACM symposium on Theory
of computing. 263–277.

[46] Meg Walraed-Sullivan, Jitendra Padhye, and David A. Maltz. 2014. Theia: Simple
and Cheap Networking for Ultra-Dense Data Centers. In Proceedings of the 13th
ACM Workshop on Hot Topics in Networks (HotNets-XIII). ACM, New York, NY,
USA, Article 26, 7 pages. https://doi.org/10.1145/2670518.2673885

[47] Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papagiannaki,
T.S. Eugene Ng, Michael Kozuch, and Michael Ryan. 2010. c-Through: Part-time
Optics in Data Centers. In Proceedings of the ACM SIGCOMM 2010 Conference
(SIGCOMM ’10). Association for Computing Machinery, New York, NY, USA,
327–338. https://doi.org/10.1145/1851182.1851222

[48] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi, Zhihao Jia,
Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch. 2023. {TopoOpt}:
Co-optimizing Network Topology and Parallelization Strategy for Distributed
Training Jobs. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23). 739–767.

[49] Tegan Wilson, Daniel Amir, Vishal Shrivastav, Hakim Weatherspoon, and Robert
Kleinberg. 2022. Extending Optimal Oblivious Reconfigurable Networks to All N
(APOCS 2022).

https://doi.org/10.1145/3341302.3342090
https://doi.org/10.1145/3544216.3544266
https://doi.org/10.1145/3544216.3544269
https://doi.org/10.1145/3544216.3544269
https://doi.org/10.1109/TNET.2019.2918782
https://www.usenix.org/conference/nsdi19/presentation/shrivastav
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/chen_kai
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/chen_kai
https://doi.org/10.1109/IEEESTD.2011.6032693
https://doi.org/10.1109/IEEESTD.2011.6032693
https://www.intel.com/content/www/us/en/products/details/fpga/stratix.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix.html
http://de5-net.terasic.com.tw
https://doi.org/10.1145/2670518.2673885
https://doi.org/10.1145/1851182.1851222

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia D. Amir, N. Saran, T. Wilson, R. Kleinberg, V. Shrivastav, H. Weatherspoon

APPENDIX
Appendices are are supportingmaterial that has not been peer-reviewed.

A EXPANDING ON NODE FAILURES
A single node or link failure in Shale impacts all flows in the sys-
tem, as cells must now be sprayed so as to avoid paths that traverse
the failed node or link. Achieving this requires three ingredients:
detecting failures, propagating information about failures, and react-
ing to information about failures. We implement these ingredients
through an extension of hop-by-hop.

To detect failures in Shale, note that nodes both send and receive
a cell from each of their neighbors once per epoch, even if there is no
traffic to send. If a node 𝑖 does not receive a cell from a neighboring
node 𝑗 , it can conservatively assume that either the node or the
link is failed. Once node 𝑖 establishes that a failure has occurred,
it immediately stops sending cells to node 𝑗 , ensuring symmetric
detection of link failures in case both nodes are still otherwise
active.

To propagate information about failed links (and by extension,
failed nodes), we introduce invalidation tokens, which indicate
which paths must be invalidated due to a failed link. Invalida-
tion tokens have a similar format as the regular tokens used in
hop-by-hop, and can similarly be sent using the portion of headers
allocated to returning tokens. We add a single bit to the header in
order to differentiate a regular token from an invalidation token.
Invalidation tokens are of the form { 𝑗, 𝑛}, and indicate that a node
has no valid way to route cells with 𝑛 spraying hops remaining
toward destination 𝑗 .

Tokens with 𝑛 = 0 communicate that the last link on the direct
path leading to node 𝑗 is no longer usable. Because a link failure in-
validates many direct semi-paths at once, a single invalidation token
with index 0 may indicate that cells at node 𝑖 can no longer reach
multiple destinations via direct semi-paths. Therefore, invalidation
tokens with index 0 do not correspond to a single bucket (recall,
a bucket indicates a specific destination and number of spraying
hops remaining) in the same way as regular tokens. Meanwhile,
tokens with 𝑛 > 0 do correspond to a single bucket. They indicate
that a node has no valid way to route toward destination 𝑗 on a
path with 𝑛 spraying hops remaining.

We first address direct hops. When node 𝑖 determines that its
link in phase 𝑝 to neighboring node 𝑗 has failed, it immediately
drops all cells awaiting their last hop to node 𝑗 . Cells being sent on
their direct semi-path via node 𝑗 to another destination are reset to
their first spraying hop and re-enqueued, while cells on spraying
hops via node 𝑗 are simply re-enqueued to a different neighboring
node in the same phase. Node 𝑖 then sends the invalidation token
{ 𝑗, 0} to all of its neighbors.

When a node 𝑘 receives an invalidation token of the form { 𝑗, 0}
from neighbor 𝑘′ in phase 𝑞, it learns that the final link in the direct
path from 𝑘′ to 𝑗 has failed. Since direct paths are deterministic
and form a tree, it can compute the final link (𝑖, 𝑗) and the phase
𝑝 that this final link occurs in by considering the direct path the
invalidation token must have traveled on over the past few phases.
Node 𝑘 reacts by first dropping all cells enqueued to be sent on
a direct semi-path to node 𝑗 via node 𝑘′. It then finds all cells
enqueued on direct semi-paths via the failed link to destinations

0-4kB

4-16kB

16-64kB

64-256kB

256kB
-1MB

1-4MB

Flow size

0

50

100

150

200
h=4

0-4kB

4-16kB

16-64kB

64-256kB

256kB
-1MB

1-4MB

Flow size

0

50

100

150

200

M
e
a
n
 F

C
T
 (

si
ze

-n
o
rm

a
liz

e
d
)

h=2

0-4kB

4-16kB

16-64kB

64-256kB

256kB
-1MB

1-4MB

4-16MB

16-64MB

64MB+

Flow size

100

101

102

103

104

105

h=4 (log scale)

0-4kB

4-16kB

16-64kB

64-256kB

256kB
-1MB

1-4MB

4-16MB

16-64MB

64MB+

Flow size

100

101

102

103

104

105

M
e
a
n
 F

C
T
 (

si
ze

-n
o
rm

a
liz

e
d
)

h=2 (log scale)

none

prio

ISD

RD

NDP

spray-short

hop-by-hop

HBH+spray

Heavy tailed workload — N=10,000

Short flow workload — N=10,000

Figure 14: Mean slowdowns for experiments in Section 5.3.

other than 𝑗 , and resets them to their first spraying hop. Finally,
node 𝑘 forwards the invalidation token { 𝑗, 0} to all neighboring
nodes it connects with in phases 𝑝 through 𝑞 − 1, inclusive. These
are the neighbors that could themselves forward a cell to node 𝑘
whose direct path would then traverse the failed link.

We now address spraying hops. Once a node 𝑘 receives an in-
validation token from a neighbor 𝑘′ of the form { 𝑗, 𝑛}, it from then
on avoids sending cells to destination 𝑗 on their (ℎ − 𝑛)th spraying
hop via 𝑘′. If it has any such cells currently enqueued, it instead
attempts to spray them via a different spraying hop in the same
phase which has not yet been invalidated. If 𝑘 has already received
identical invalidation tokens from all other neighbors in the same
phase 𝑝 , this means that node 𝑘 cannot reach destination 𝑗 on paths
with 𝑛 spraying hops remaining via any of its neighbors in phase
𝑝 . Instead of re-spraying the cells, it drops them. Additionally, it
sends an invalidation token of the form { 𝑗, 𝑛 + 1} to all neighboring
nodes in phase 𝑝 − 1.

To account for failed links coming back online, we introduce
re-validation tokens. Re-validation tokens have the same format as
invalidation tokens and are propagated in the same way, but have
the reverse effect. To differentiate invalidation and re-validation
tokens, we add an additional bit in the header.

B ADDITIONAL GRAPHS
B.1 Mean FCT Slowdowns
Figure 14 shows themean flow completion times that were observed
for the experiments shown in Figure 10 and Figure 11. HBH+spray
has very low mean queuing times, and is usually either the best or
nearly the best out of all evaluated congestion control mechanisms.
These graphs show that priority indeed improves the mean flow
completion time compared to none. However, because priority
does not actually reduce queue lengths, HBH+spray outperforms it
even on this measure.

Shale: A Practical, Scalable Oblivious Reconfigurable Network ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

none
prio ISD RD

NDP

sp
ra

y-s
hort

hop-by-h
op

HBH+sp
ra

y
0

100

200

300

h=4

none
prio ISD RD

NDP

sp
ra

y-s
hort

hop-by-h
op

HBH+sp
ra

y
0

500

1000

1500

2000

none
prio ISD RD

NDP

sp
ra

y-s
hort

hop-by-h
op

HBH+sp
ra

y
0

100

200

300

400

500

M
a
x
im

u
m

 q
u
e
u
e
 l
e
n
g
th

 (
ce

lls
)

none
prio ISD RD

NDP

sp
ra

y-s
hort

hop-by-h
op

HBH+sp
ra

y
0

20

40

60

9
9

%
 q

u
e
u
e
 l
e
n
g
th

 (
ce

lls
)

h=2
Short flow workload — N=10,000

Figure 15: Queue lengths observed during the short flow
workload.

none
prio ISD RD

NDP

sp
ra

y-s
hort

hop-by-h
op

HBH+sp
ra

y
100

101

102

103

104

105

9
9

%
 q

u
e
u
e
 l
e
n
g
th

 (
ce

lls
)

h=2 (log scale)

none
prio ISD RD

NDP

sp
ra

y-s
hort

hop-by-h
op

HBH+sp
ra

y
100

101

102

103

104

105

h=4 (log scale)

none
prio ISD RD

NDP

sp
ra

y-s
hort

hop-by-h
op

HBH+sp
ra

y
100

101

102

103

104

105

Heavy tailed workload — N=10,000

none
prio ISD RD

NDP

sp
ra

y-s
hort

hop-by-h
op

HBH+sp
ra

y
100

101

102

103

104

105

M
a
x
im

u
m

 q
u
e
u
e
 l
e
n
g
th

 (
ce

lls
)

Figure 16: Queue lengths observed during the heavy-tailed
workload.

B.2 Queue Lengths
Figure 15 shows the queue lengths observed during the short flow
workload. Although NDP and HBH+spray have similar maximum
queue lengths, NDP has a far higher 99th percentile queue length.
This helps to explain why NDP experiences worse buffering.

Figure 16 shows the queue lengths observed during the heavy-
tailed workload. Note that for both ℎ = 2 and ℎ = 4 NDP, over 1% of
queues are at or near the point where packets would be dropped.

0-4kB

4-16kB

16-64kB

64-256kB

256kB
-1MB

1-4MB

4-16MB

16-64MB

64MB+

Flow size

100

101

102

103

104

105

h=4 (log scale)

0-4kB

4-16kB

16-64kB

64-256kB

256kB
-1MB

1-4MB

4-16MB

16-64MB

64MB+

Flow size

100

101

102

103

104

105

9
9

.9
%

 F
C

T
 (

si
ze

-n
o
rm

a
liz

e
d
) h=2 (log scale)

none

prio

ISD

RD

NDP

spray-short

hop-by-hop

HBH+spray

Heavy tailed workload — N=10,000

Figure 17: Tail latencies for flows that do not experience
incast with very long (>256 MB) flows.

B.3 Tail FCT slowdowns for non-incasted flows
Because hop-by-hop does not differentiate between cells bound for
the same destination, if a short flow is sent to the same destination
as an ongoing long flow experiencing egress congestion, the short
flow will experience the same egress congestion. For ℎ = 4, because
each node only has a small number of neighbors at our system
scale, hop-by-hop is able to strongly limit the queue lengths in
this type of situation. However, at our system size, nodes in ℎ = 2
have an order of magnitude more neighbors, allowing longer per-
bucket queues to build up at each node, increasing latency for
incasted flows. Additionally, the epoch length for ℎ = 2 is an order
of magnitude longer than for ℎ = 4 at our system size, making
latency more sensitive to this effect. For this reason, HBH+spray
experiences somewhat more tail latency than the ISD baseline for
the heavy-tailed workload on ℎ = 2, but not on ℎ = 4.

In order to evaluate the degree of this effect, Figure 17 shows the
tail latencies only for flows that are not being incast to the same
destination as ongoing very long flows (size > 256 MB). When those
flows are excluded, HBH+spray with ℎ = 2 performs more similarly
to ISD.

C ADDITIONAL IMPLEMENTATION DETAILS
Figure 18 visualizes the RX and TX paths described in Section 4.1,
along with the clock cycles needed in the critical path for each
step. Each node in Shale sends and receives one cell per timeslot,
requiring both the RX and TX path to be run once per timeslot.
However, they can be run in parallel.

Note that the TX path takes multiple clock cycles to complete.
Dequeuing from a PIEO queue takes 4 cycles [35], only 3 of which
are a part of our critical path. This delays transmission as the end-
host dequeues the next eligible bucket from the relevant PIEO queue.
Adding to this is the overhead from DRAM read latencies, which
can delay the final steps of the TX path by many clock cycles. We
therefore pre-compute which cells to send, allowing us to use the
entire timeslot for transmission.

For our evaluation in Section 5.1, timeslots are long enough
that the entire TX and RX paths complete within a single timeslot.
However, both our TX and RX paths can be pipelined to enable
much faster timeslot periods. The main limit is PIEO operations,
which occupy the PIEO hardwaremodule for four cycles. Our design
can easily support four-cycle timeslots by using a dedicated PIEO

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia D. Amir, N. Saran, T. Wilson, R. Kleinberg, V. Shrivastav, H. Weatherspoon

1 cycle

Increment token counts
to reflect received tokens
Write received cell to the
correct memory buffer
Enqueue bucket index to
the correct PIEO queue

•

•

•

1 cycle

Get neighbor to send to
in current timeslot

1 cycle

Add up to 2 enqueued
tokens, start sending

1 cycle
Receive the loaded cell

up to 3 cycles

Try to dequeue bucket
index from PIEO queue

1 cycle

(If dequeue succeeded)
Load next cell from the
correct forward queue
Spend a token locally
Generate and enque a
token to previous hop

•

•
•

1 cycle

Convert received tokens
to bucket indices
Determine if the received
cell should be sprayed,
forwarded, or delivered
Calculate cell's next hop

•

•

•

1 cycle

(If dequeue failed)
Select a local flow
from which to send
Load next cell from the
correct local queue
Spend a token locally

•

•

•

TX Path RX Path

Figure 18: Step-by-step breakdown of receive and send paths
in Shale’s hardware implementation.

source id 15 bits destination id 15 bits
remaining sprays 2 bits sequence number 22 bits

token 1 17 bits token 2 17 bits
CRC checksum 8 bits

Figure 19: 12-byte header format valid for up to 32,768 nodes.

module for both the RX and TX paths. Our packet simulations in
Sections 5.2 to 5.5 begin a new timeslot every 5.632 ns. Today’s
networkingASICs frequently have a clock rate of around 1GHz [23],
which is more than sufficient to support this timeslot period.

In order to minimize the overhead of reconfiguration, we set
the timeslot period based on the length of the guardband (i.e., the
reconfiguration delay) and the port count at each node. When these
two parameters are kept constant, the same frequency ASIC is
sufficient to support our routing and congestion control even at
higher line rates. If needed, timeslots could potentially be started
more frequently by either using a higher-frequency PIEO module,
or using multiple PIEO modules in parallel.

In our evaluation of Shale, we assume 256-byte cells with a
12-byte header and 244-byte payload. Figure 19 shows a header
structure that is valid for Shale with ℎ ≤ 4 and up to 32,768
nodes. This header supports hop-by-hop, which we combine with
spray-short (which does not require support from the header).

D THE TOKEN BUDGET PARAMETER
There is significant potential for hop-by-hop to limit throughput
when the propagation delay is too large relative to the epoch length.
Once a node sends a cell, even if the next hop immediately forwards
it, it still takes at least twice the propagation delay to receive a token
back. This limits the sending rate of cells in the same bucket. If
propagation delay is double the epoch length, then the round-trip
to return tokens takes 4 epochs, and only 1

4 the bandwidth of each
link is available to a given bucket.

To mitigate this, we introduce a parameter 𝑇 , the token budget.
Rather than only sending one cell from the same bucket on a given
link before receiving a token back, nodes may send up to 𝑇 such
cells. This is intended to mitigate the following scenario: note that
it takes at least two propagation delays for a node to receive a token
back after sending a cell, even if the next node can forward the
cell on its subsequent hop immediately. When propagation delay
is large relative to epoch length, this can unnecessarily reduce the
rate at which a node can send cells on their next hops. This can be
particularly problematic when the propagation delay is multiple
times larger than the epoch length. Therefore, we introduce the
token budget𝑇 . We allow a node to send up to𝑇 cells from the same
bucket on a given link before receiving a token back. Increasing 𝑇
therefore increases the maximum sending rate of individual flows,
at the expense of decreasing hop-by-hop’s effectiveness.

Increasing𝑇 is the most effective on the first hop. This is because
the most constrained parts of the path between any two nodes are
the first and final hop. While frames can always be sent on the
final hop without waiting for tokens, this is not the case for the
first hop. We therefore introduce an additional parameter 𝑇𝐹 , the
first-hop token budget. This parameter operates the same as 𝑇 but
only affects first hops, achieving most of the benefits of increasing
𝑇 while reducing its negative effects.

For permutation traffic, Shale’s throughput guarantee can be met
as long as the propagation delay is no greater than ℎ𝑇𝐹𝐸, where 𝐸
is the epoch length. Increasing𝑇𝐹 beyond this point allows senders
to take advantage of periods of reduced overall network activity to
send above Shale’s throughput guarantee. Shale’s use of VLB en-
sures that there is high fan-out on subsequent hops in the spraying
semi-path, and high fan-in along the direct semi-path. The degree
of fan-in / fan-out is ℎ

√
𝑁 − 1, so Shale’s throughput guarantee can

be met as long as 1
2ℎ (ℎ

√
𝑁−1)

of the bandwidth of the penultimate
link is available. This is true when the propagation delay is no
greater than ℎ𝑇 (ℎ

√
𝑁 − 1)𝐸. For systems with longer propagation

delay, the 𝑇 parameter can be increased to mitigate this effect.

	Abstract
	1 Introduction
	2 Background
	3 Shale
	3.1 Schedule and Routing Scheme
	3.2 Handling Multiple Traffic Classes
	3.3 Congestion Control
	3.4 Failures

	4 Implementation
	4.1 End-host Design
	4.2 Optimizations
	4.3 Hardware Resource Scaling

	5 Evaluation
	5.1 Hardware Prototype and Simulator
	5.2 Interleaving
	5.3 Congestion Control Mechanism
	5.4 Performance under Failures
	5.5 Scalability

	6 Related work
	7 Conclusion
	Acknowledgments
	References
	A Expanding on node failures
	B Additional graphs
	B.1 Mean FCT Slowdowns
	B.2 Queue Lengths
	B.3 Tail FCT slowdowns for non-incasted flows

	C Additional Implementation Details
	D The Token Budget Parameter

