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Oblivious routing has a long history in both the theory and practice of networking. In this

dissertation, we initialize the formal study of oblivious routing in the context of reconfigurable

networks, a new architecture that has recently come to the fore in data center networking,

due to its increased energy efficiency and scaling potential. We focus on the tradeoffs between

maximizing throughput and minimizing latency in this space.

For every constant throughput rate, we characterize the minimum latency (up to a

constant factor) achievable by an oblivious reconfigurable network design. The tradeoff curve

turns out to be surprisingly subtle: it has an unexpected scalloped shape, reflecting the fact

that routing becomes more costly when average path length is not an integer, since equalizing

the path lengths is not achievable. We show that in order to guarantee the throughput

value, Valiant load balancing is necessary, which lengthens routing paths by a factor of two.

However, we also show that a strictly superior latency-throughput tradeoff is achievable when

the throughput bound is relaxed to hold with high probability. The same improved tradeoff

is also achievable with guaranteed throughput under time-stationary demands, provided the

latency bound is relaxed to hold with high probability and that the network is allowed to

be semi-oblivious, using an oblivious (randomized) connection schedule but demand-aware

routing.
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CHAPTER 1

INTRODUCTION

As society moves toward the modern age, data centers are increasingly becoming the

backbone of the current technological revolution. Data center demands are expected to

triple by 2030 [23], with the expectation that this growth will be met by a combination of

increasing capacity within current data centers, and increasing the total number of data

centers worldwide.

At a micro level, we can see the effects of this growth playing out in Northern Virginia,

currently the largest data center market in the world [14]. Dominion Power, the main

electricity provider in the state, cites that data centers contribute to over 20% of their electric

sales, almost as much as all other commercial electric sales in the state [19]. In addition, data

center capacity in the area is expected to double in size by 2028 [39], which necessitates both

new data center buildings, and new electricity infrastructure to support this growth. However,

challenges have been mounting due to both the sheer size of the project, and opposition

from local jurisdictions and residents about land preservation, environmental, and housing

concerns [10, 14].

This motivates studying how to increase data center capacity, without increasing the

number of data centers, or their electricity consumption. In this work, we focus on one key

component of the data center: the network, and we focus on it from a theoretical angle.

Data centers are made up of individual computers, or servers, organized into racks, which

must communicate with one another in order for the data center to function. Thus, it is

necessary to build and place physical hardware that enables such communication, and to

design communication protocols to effectively use this hardware. Together, these two pieces

– the network topology and the routing protocol – constitute a network design. Perhaps

unsurprisingly, current technology directly informs what network designs are feasible to
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implement in practice, how expensive such designs are to build and maintain, and what

network designs are considered optimal in the space.

When creating an optimal network design, the first step is to define what optimal means.

Common performance metrics in computer networking include throughput (equivalently,

congestion), or the maximum amount of traffic that may be concurrently sent and delivered

within the network, latency, or the speed at which traffic can be routed from source to

destination, cost, which may include either the physical cost of hardware and setup, or upkeep

costs such as energy usage, and much more. In addition, there are a host of other properties

that we often like our computer networks to have, including (but not limited to): resilience

to network node or link failures, memory or space efficiency of the routing protocol, etc. In

this thesis, we focus mainly on both throughput and latency.

Throughput and latency turn out to be fundamentally at odds with each other, which

makes them incredibly interesting to study together. Intuitively, this is because optimizing

for either throughput or latency requires usage of the same limited resource in the network,

total network bandwidth (i.e. total edge capacity). In order for data packets to reach their

destination more quickly, more network bandwidth is required per data packet. However,

total network bandwidth is a fixed resource. Therefore, routing data more quickly necessitates

routing less data in total.

1.1 Reconfigurable Networks

As discussed above, our data center network (and thus our model) is constrained by the real

world. For example, it is technologically infeasible to build a network which directly connects

every server pair together, because our current networking technology has very limited port

counts. Instead, most data centers connect many machines to a piece of technology called

a switch, typically either a circuit switch or a packet switch. If machine A wants to send a
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message to machine B, and both are connected to the same switch, then machine A simply

sends the message to the switch, the message routes through the switch, then to machine B.

Most modern datacenters currently use packet switches, which function in the following

way. If machine A wants to send a message directly to machine B, it adds a header to the

top of the message, which contains the destination information. In this case, the header will

indicate that machine B is the intended destination of the message. Then machine A sends

the message (including the header) to the packet switch. The packet switch reads the header,

and then sends the message to the output port associated with machine B1.

An alternative is circuit switches, which one can imagine as functioning similarly to old

telephone networks; the circuit switch changes (or reconfigures) the circuits which directly

connect servers to each other. So if machine A wants to send a message directly to machine B,

headers are no longer necessary. Instead, machine A needs to know exactly when the circuit

switch will set up a circuit connecting it to machine B. This can be done one of two ways.

Either the circuit switch has a connection schedule that is predetermined ahead of time, and

thus all machines (including machine A) have full knowledge of which machines they will be

connected to at which times, and can simply wait their turn. Or, there may be a centralized

scheduler. Machine A sends a request to the scheduler that it be connected to machine B, the

scheduler computes some schedule based on all the requests it has received thus far, instructs

the circuit switch on the new schedule, and additionally informs all machines of the new

schedule (including machine A).

Previously, circuit switches had long reconfiguration times. That is, it always took a

long time to set up the next circuit in the connection schedule. Therefore, it was desirable

to always use a single optimal circuit for the current traffic, and use a multi-hop routing

protocol for any traffic that was not directly connected to its destination. This can be seen in

1While the specifics of how the packet switch performs this are complex enough to be their own research
area, this high-level explanation is all that is necessary for the sake of this document.
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early circuit-switched designs for datacenters [20, 35, 50], which relied on predictable traffic

demands to choose optimal edge configurations and routes for sending data between nodes.

However, this approach impacted latency; this design technique could not handle traffic

that required fast routing to its destination, and it provided few other benefits compared to

state-of-the-art packet switch networks at the time, so it never went into production.

However, recently circuit switch designs have emerged that are capable of nanosecond-scale

reconfiguration times, including both electrical [37] and optical [9, 13, 16] switches. In addition,

as network technologies and the desired characteristics of data center deployments continue

to evolve, the limitations of packet switches are becoming more apparent. Due to the end of

Moore’s Law and Dennard Scaling, packet switches face increasing difficulty in scaling to meet

network demands without consuming unnecessarily large amounts of power, both within high-

density racks [43] and throughout the data center [3]. As a result, many emerging network

designs have intentionally avoided using packet switches [15, 17, 21, 24, 26, 34, 36, 40, 44, 49].

Circuit switches present an exciting alternative to packet switches due to their reduced power

consumption [3, 43], and potential to scale to arbitrary bandwidth (in the case of optical

switches) [9, 36].

Recent works in this space which rely on nanosecond-scale circuit switches [1, 22, 38, 43]

have made a case that traffic demands in datacenters are highly unpredictable and change

at very fine time granularities, making it challenging, if not impossible, to accurately track

demands at any given time. To overcome this fundamental challenge, these works have

advocated for network topologies and routing protocols that are oblivious to traffic demand

matrices. (That is, the circuit switch has a schedule which is predetermined ahead of time,

and does not rely on current traffic patterns.)

In this thesis, we focus on a new networking model called reconfigurable networks, which

theoretically models the networks that are feasible to implement using circuit switch technology.

We make the first attempt to formally study the problem of oblivious routing, and the inherent
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tradeoffs between throughput and latency, in this context.

1.2 Oblivious Routing

Oblivious routing has a long history in both the theory and practice of networking. By

design, an oblivious routing protocol forwards data along a fixed path (or fixed distribution

over paths), and is designed to provide good performance guarantees across a wide range of

possible traffic demands.

In a landmark 1981 paper, Valiant and Brebner articulated this central problem, and

provided a routing strategy that remains state-of-the-art to this day. This solution, which

came to be known as Valiant load balancing, or VLB, was beautifully simple: to send data

from source s to destination t, sample an intermediate node u uniformly at random. Then

form a routing path from s to t by concatenating “direct paths” from s to u and from u to t.

(The definition of direct paths may depend on the network topology; often shortest paths

suffice.) This lengthens routing paths by a factor of two and thus consumes twice as much

bandwidth as direct-path routing. However, crucially, it is oblivious: the distribution over

routing paths from s to t depends only on the network topology, not the communication

pattern [47].

The focus of oblivious routing research spurred by Valiant and Brebner in the 1980’s was

on network topologies designed to enable efficient communication among a set of processors,

such as hypercubes and shuffle exchange networks [12, 28, 45–47]. These topologies tended to

be highly symmetric (often with vertex- or edge-transitive automorphism groups) and tended

to have low diameter and no sparse cuts. One could loosely refer to this class of networks as

optimized topologies.

A second phase of oblivious routing research, initiated by Räcke in the early 2000’s,

5



focused on oblivious routing schemes for general topologies. Compared to optimized topologies,

the oblivious routing schemes for general topologies required much greater overprovisioning,

inflating the capacity of each edge by at least a logarithmic factor compared to the capacity that

would be needed if routing could be done using an optimal (non-oblivious) multicommodity

flow. This line of work [5, 6, 11, 25, 41] culminated in Räcke’s discovery of oblivious routing

schemes for general networks that are guaranteed to approximate the optimum congestion

within a logarithmic factor in the worst case [42]. This algorithm, which uses a path budget

parameter k, was later implemented and tested in wide-area networks for small k, and shown

to have good performance [32].

In addition to fully oblivious routing, partially adaptive (or, semi-oblivious) routing

protocols have also been examined, in which the router precommits to a limited set of paths

between each pair of vertices, and at runtime may only send flow on one of the precommitted

paths. When precommiting to only log(n) paths, this approach was implemented and shown

to be effective in wide-area networks [32], and was even recently proven to be polylog(n)-

competitive [52]. Since oblivious routing under the same sparsity constraint provably cannot be

polylog(n)-competitive [28], to the best of our knowledge, this constitutes the first asymptotic

separation between the power of semi-oblivious and oblivious routing.

1.3 Content Overview

In this thesis, we revisit the study of oblivious routing for a new class of networks, reconfigurable

networks, and investigate the inherent tradeoffs between throughput and latency in this

model. Specifically, we ask

For every throughput rate r, what is the minimum latency achievable by a recon-

figurable network design that achieves throughput r?
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We start with investigating fully oblivious reconfigurable network (ORN) designs which

guarantee their throughput value, and we fully resolve this question to within a constant

factor2 for d-regular reconfigurable networks, except when d is very large — bounded below

by a constant power of N , the number of nodes in the network. Our optimal network designs

use VLB in the construction of their routing protocol, demonstrating that, like networks

of fixed-capacity links permitting any communication pattern with bounded ingress and

egress rates per node [7, 29, 51], VLB is also a provably optimal technique in reconfigurable

networks.

In Chapter 3, we discuss how to build ORN designs which optimally trade off between

throughput and latency. Specifically, for each fixed value of throughput r, we show how to

build ORN designs for infinitely many network sizes N which guarantee throughput r, and

achieve optimal maximum latency (up to a constant factor). This chapter is split into two

parts, one for each family of ORN designs which together create this result. The Elementary

Basis Scheme (EBS) is optimal for most values of throughput, and the Vandermonde Basis

Scheme (VBS) is optimal for the rest.

The designs in Chapter 3, while theoretically optimal, only work for very limited network

sizes, which depend on the desired throughput guarantee. In Chapter 4, we show how to

extend our ORN designs to any sufficiently large network size N , using a scheme based

around “dummy nodes.” Like Chapter 3, this chapter is also split into two parts. One for

the EBS extended design, and one for the VBS extended design.

In Chapter 5, we present all theoretical lower bounds on latency within this document.

2 One could, of course, ask the transposed question: for every latency bound L, what is the maximum
guaranteed throughput rate achievable by an oblivious routing scheme with maximum latency L? Our work
also resolves this question, not only to within a constant factor, but up to an additive error that tends to zero
as N →∞. Optimizing throughput to within a factor of two, subject to a latency bound, is much easier than
optimizing latency to within a constant factor subject to a throughput bound. The importance of the latter
optimization problem, i.e. our main question, is justified by the high cost of overprovisioning networks, which
leads data center network operators to be much less tolerant of suboptimal throughput than of suboptimal
latency.
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These lower bounds are necessary to ensure that the reconfigurable network designs described

in the rest of the document are optimal. In Section 5.1, we show that the ORN designs from

Chapters 3 and 4 are optimal up to a constant factor.

We then show that the ability to randomize the network topology in reconfigurable networks

allows oblivious routing schemes that improve upon VLB. We obtain reconfigurable network

designs that improve upon the maximum latency achievable for a given throughput value by

nearly the square root, under two relaxations of obliviousness:

1. In Chapter 6, when the network is allowed a small probability of violating the throughput

guarantee; or

2. In Chapter 7, when the throughput guarantee must hold with probability 1, but routing

is only semi-oblivious.

The proof of the result in Chapter 6 requires a complicated tail bound described in Section 6.4,

and we also prove that the topology produced forms an expander graph in Section 6.5.

As noted above in Section 1.2, semi-oblivious routing refers to routing protocols in which

the network designer must pre-commit (in a demand-oblivious manner) to a limited set of

routing paths between every source and destination, but the decision of how to distribute

flow over those paths is made with awareness of the requested communication pattern. In the

context of reconfigurable networks, we interpret this to mean that the connection schedule is

oblivious but that the routing protocol may be demand-aware. In fact, the semi-oblivious

routing protocol that we refer to in Chapter 7 is demand-aware in a very limited sense: it uses

the oblivious routing protocol from Chapter 6 with high probability, but in the unlikely event

that this leads to congestion on one or more edges, it reverts to using a different oblivious

routing scheme that is guaranteed to avoid congestion at the cost of incurring higher latency.

In Section 5.2, we show that the designs from Chapters 6 and 7 are optimal up to a
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logarithmic factor in latency. By combining the results from Section 5.3 and Section 7.4,

we also prove that purely oblivious reconfigurable network designs (even with a randomized

connection schedule) cannot achieve the same result as our semi-oblivious design: if the

throughput guarantee must hold with probability 1, then the average latency must be strictly

asymptotically greater for oblivious reconfigurable networks than for semi-oblivious ones.

Thus, we prove an asymptotic separation between the power of semi-oblivious and oblivious

routing in reconfigurable networks.

In Chapter 2, we present the formal definitions relevant to the technical chapters of

this thesis. We define Oblivious Reconfigurable Network (ORN) designs, Semi-Oblivious

Reconfigurable Network (SORN) designs, throughput, and latency. We also discuss and

motivate some of the theoretical assumptions we make about reconfigurable network designs

throughout the rest of this document.
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CHAPTER 2

DEFINITIONS

Definition 1. A connection schedule of N nodes and period length T is a sequence of

permutations π = π0, π1, . . . , πT−1, each mapping [N ] to [N ]. πk(i) = j means that node i is

allowed to send one unit of flow to node j during any timestep t such that t ≡ k (mod T ).

The virtual topology of the connection schedule π is a directed graph Gπ with vertex

set [N ] × Z. The edge set of Gπ is the union of two sets of edges, Evirt and Ephys. Evirt is

the set of virtual edges, which are of the form (i, t)→ (i, t+ 1) and represent flow waiting

at node i during the timestep t. Ephys is the set of physical edges, which are of the form

(i, t)→ (πt(i), t+ 1), and represent flow being transmitted from i to πt(i) during timestep t.

The emulated graph of the connection schedule π can be viewed as a time-compressed

version of π. It is a directed graph Gem with vertex set [N ]. The edge set of Gem is the set

of all edges that appear at some point during the period of π, that is,

E(Gem) =
{

(i, πt(i)) : t ∈ {0, . . . , T − 1}
}
.

We interpret a path in Gπ from (a, t) to b as a potential way to transmit one unit of flow

from node a to node b, beginning at timestep t and ending at some timestep t′ > t. Let

P(a, b, t) denote the set of paths in Gπ starting at the vertex (a, t) and ending at some (b, t′)

for any t′ > t, and let PL(a, b, t) be the set of such paths for which t′ − t ≤ L. Finally, let

Timeslot
0 1 2

N
o
d
e

A B C D
B C D A
C D A B
D A B C

A,0

B,0

C,0

D,0

A,1

B,1

C,1

D,1

A,2

B,2

C,2

D,2

A,3

B,3

C,3

D,3

Figure 2.1: A connection schedule among four nodes, as well as part of its corresponding
virtual topology. The full virtual topology represents a countably infinite number of timeslots.
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P =
⋃
a,b,t P(a, b, t) denote the set of all paths in Gπ.

Definition 2. A flow is a function f : P → [0,∞). For a given flow f , the amount of flow

traversing an edge e is defined as:

F (f, e) =
∑
P∈P

f(P ) · 1e∈P

We say that f is feasible if for every physical edge e ∈ Ephys, F (f, e) ≤ 1. Note that in our

definition of feasible, we allow virtual edges to have unlimited capacity.

Definition 3. An oblivious routing scheme R is a set of functions R(a, b, t) : P → [0, 1], one

for every tuple (a, b, t) ∈ [N ]× [N ]× Z, such that:

1. For all (a, b, t) ∈ [N ] × [N ] × Z, R(a, b, t) is a probability distribution supported on

P(a, b, t).

2. R has period T . In other words, R(a, b, t) is equivalent to R(a, b, t+ T ) (except with

all paths transposed by T timesteps).

Definition 4. An Oblivious Reconfigurable Network (ORN) design R consists of both a

connection schedule πk and an oblivious routing scheme R.

Definition 5. A demand-aware routing scheme {Sσ : σ permut on [N ]} is a set of functions

Sσ(a, t) : P → [0, 1], one for every tuple (a, t) ∈ [N ] × Z and permutation σ on [N ], such

that:

1. for all (a, t, σ) ∈ [N ] × Z × SN , Sσ(a, t) is a probability distribution supported on

P(a, σ(a), t).

2. Sσ has period T . In other words, Sσ(a, t) is equivalent to Sσ(a, t+ T ) (except with all

paths transposed by T timesteps).

Definition 6. A Semi-Oblivious Reconfigurable Network (SORN) Design S consists of a

connection schedule πk and a demand-aware routing scheme {Sσ : σ permut on [N ]}.

11



Definition 7. The latency L(P ) of a path P in Gπ is equal to the number of edges it contains

(both virtual and physical). Traversing any edge in the virtual topology (either virtual or

physical) is equivalent to advancing in time by one timestep, so the number of edges in a path

equals the elapsed time. For an ORN Design R or SORN design S, the maximum latency is

the maximum over all paths P which may route flow.

Lmax(R) = max
P∈P
{L(P ) : ∃a, b, t for which R(a, b, t, P ) > 0}

Lmax(S) = max
P∈P
{L(P ) : ∃a, t, σ for which Sσ(a, t, P ) > 0}

The average (or normalized) latency is the weighted average across all possible demand

pairs and all paths P which may route flow.

Lavg(R) =
1

N2T

∑
a,b,t

∑
P∈P(a,b,t)

R(a, b, t, P )L(P )

Lavg(S) =
1

NTN !

∑
σ,a,t

∑
P∈P(a,σ(a),t)

Sσ(a, t, P )L(P )

Definition 8. A demand matrix is an N ×N matrix which associates to each ordered pair

(a, b) a rate of flow to be sent from a to b. A demand function D is a function that associates

to every t ∈ Z a demand matrix D(t) representing the amount of flow D(t, a, b) originating

between each source-destination pair at timestep t.

A time-stationary demand is a demand function in which every demand matrix D(t) is

the same. A permutation demand Dσ is a demand function in which every demand matrix is

the permutation matrix defined by σ : [N ]→ [N ]. Note that permutation demands are also

time-stationary.

Definition 9. If R is an oblivious routing scheme and D is a demand function, the induced

flow f(R,D) is defined by:

f(R,D) =
∑

(a,b,t)∈[N ]×[N ]×Z

D(t, a, b)R(a, b, t).

12



If {Sσ : σ permut on [N ]} is a demand-aware routing scheme and Dσ is a permutation

demand function (possibly scaled by some constant), then the induced flow is defined by

f(Sσ, Dσ).

Definition 10. An ORN Design R guarantees throughput r if the induced flow f(R, rD) is

feasible whenever for all t, the row and column sums of D(t) are bounded above by 1. (Such

matrices D(t) are called doubly sub-stochastic.) An ORN Design R guarantees throughput

r with respect to time-stationary demands if for every time-stationary demand function D

with row and column sums bounded by 1, then the induced flow f(R, rD) is feasible. An

easy application of the Birkhoff-von Neumann Theorem establishes the following: in order

for an ORN design to guarantee throughput r with respect to time-stationary demands, it is

necessary and sufficient that it guarantee throughput r with respect to permutation demands.

An SORN design S guarantees throughput r (with respect to permutation demands) if,

for every permutation demand Dσ, the induced flow f(Sσ, rDσ) is feasible for all t.

Definition 11. A distribution over ORN designs R, is said to achieve throughput r with high

probability if, for any d ≥ 1 and demand function D such that D(t) is doubly sub-stochastic

for all t, routing rD on a random R ∼ R induces a feasible flow with probability at least

1− Cd/Nd, where Cd is a constant that may depend on d.

Similarly, R is said to achieve throughput r with high probability under the uniform

distribution on permutation demands if, for uniformly random permutations σ and any d ≥ 1,

the induced flow f(R, rDσ) is feasible with probability at least 1 − Cd/Nd, where Cd is a

constant that may depend on d, and the randomness is over both the draw of R from R

and the draw of σ from the uniform distribution over permutations. In the special case

when R is a point-mass distribution on a singleton set {R}, we say that the fixed design R

achieves throughput r with high probability under the uniform distribution over permutation

demands.

Definition 12. A distribution over SORN designs S , is said to achieve maximum latency L

13



with high probability under the uniform permutation distribution if, over uniformly random

permutation σ and for any d ≥ 1, routing rDσ on a random S ∼ S uses paths of maximum

latency L with probability at least 1−Cd/Nd, where Cd is a constant that may depend on d.

In the special case when S is a point-mass distribution on a singleton set {S}, we say that

the fixed design S achieves maximum latency L with high probability under the uniform

distribution over permutation demands.

Definition 13. A round robin for a group of nodes S = {s0, . . . , sk−1} of size k starting

at timestep t0, is a schedule of k − 1 timesteps in which each element of S has a chance

to send directly to each other element exactly once. Specifically, πt(si) = si+t (mod k) for

t0 < t < t0 + k − 2. That is, during timestep t node si may send to node si+t mod k.

2.1 Assumptions

Note that the definitions in this section are based on the following implicit assumptions.

Fractional flow and no queueing. We interpret the amount of flow traversing an edge as

an expected number of packets. We assume that when sending flow from a source to a

destination, was may divide that flow into arbitrarily small fractional quantities which

may be sent on multiple routes.

Due to this assumption, the ORN and SORN designs described in this document send

small fractions of flow from multiple paths across the same link. However in a real system,

only one packet from one path may traverse the link during a single timestep. As a result, in

real systems queuing may happen, which is best addressed using a congestion control system.

Congestion control has a decades-long history of active research across various networking

contexts. My collaborators and I discuss this in [4], but I leave discussion of that work to my

collaborator Daniel Amir and his dissertation.
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No propagation delay. We assume that the total quantity of flow scheduled to be trans-

mitted over a link in one timeslot is received by the end of that timeslot.

In addition, our ORN and SORN models could be enhanced to take propagation delay

into account by adjusting the virtual topology. Rather than connecting physical edges from

(i, s) to (j, s + 1), they could instead connect to (j, s + dij), where dij is a whole number

representing the propagation delay from i to j in units of timeslots. As in our basic model,

nodes of the virtual topology in this enhanced model would be constrained to belong to at

most one incoming and at most one outgoing physical edge, though if dij varies with i and j

then the set of physical edges would no longer be described by a sequence of permutations.

2.2 Allowing degree d > 1 in a timeslot

Although our formalization of ORNs only describes networks in which nodes have a degree of

1 in every timeslot, it can be generalized to networks that support a d-regular connectivity

pattern in each timeslot. When d > 1, we interpret a demand matrix D which requests

throughput r as one in which the row and column sums of D are bounded above by dr.

To generalize our model of ORNs to allow degree d > 1 in a timeslot, one would once again

model the virtual topology as a graph with vertex set [N ]× Z whose edges are partitioned

into virtual and physical edges. As before, virtual edges connect (i, t) to (i, t+ 1) for all i

and t. Physical edges form a T -periodic sequence of d-regular bipartite graphs on vertex set

[N ]× {t, t+ 1} as t varies over Z. The connectivity of [N ]× {t, t+ 1} is d-regular bipartite.

By Kőnig’s Theorem, this edge set can be decomposed into d edge-disjoint perfect matchings,

which we use to “unroll” into d consecutive timeslots of a 1-regular ORN. Therefore, a

d-regular ORN design which guarantees throughput r with maximum latency L unrolls into a

1-regular ORN design which guarantees throughput r with maximum latency dL. Under this
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framework, a lower bound L∗orn(r,N) for 1-regular ORN designs trivially implies the lower

bound 1
d
L∗orn(r,N) for d-regular designs.

However, an upper bound for 1-regular designs does not necessarily imply a similar upper

bound for d-regular designs, because the routing scheme could route paths containing two or

more physical edges in timeslots belonging to the same “unrolled” segment of the 1-regular

virtual topology. This would correspond to traversing two or more edges at once in the

d-regular topology. Our upper bound constructions found in Chapters 3, 6 and 7 can be easily

modified to avoid this problem. Specifically, they can be modified to never allow flow to be

routed along two edges within any block of d consecutive time slots, provided d ≤ N1/c for a

sufficiently large constant c. This modification adds a factor of at most 2 to the maximum

latency.

Each design divides the connection schedule into phases1. In a single routing path, only

one physical hop may be taken per phase. If d evenly divides the size of the phases, then

the design needs no modification. Otherwise, we may double the length of the connection

schedule by iterating through each phase twice in a row. Either routing paths always use

the first copy of each phase, or the second copy. This modification clearly both doubles the

length of routing paths, and ensures that routing paths never use two edges within any block

of d consecutive time slots, provided d is no more than the length of the phases, which can

be bounded by N1/c for a sufficiently large constant c.

Then, by inverting the unrolling process, we obtain a d-regular ORN design with maximum

latency L = O
(
1
d
L∗orn(r,N)

)
. This confirms that the tight bound on maximum latency for

d-regular ORN designs is Θ
(
1
d
L∗orn(r,N)

)
whenever d ≤ N1/(h+1) and justifies our focus on

the case d = 1 throughout the remainder of this paper.

1See Chapters 3, 6 and 7 for more details.
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CHAPTER 3

ORN DESIGNS

This chapter is devoted to proving the following theorem.

Theorem 1. Consider any constant r ∈ (0, 1
2
]. Let (h, ε) to be the unique solution in N×(0, 1]

to the equation 1
2r

= h+ 1− ε, and let L∗orn(r,N) be the function

L∗orn(r,N) = h
(
N1/(h+1) + (εN)1/h

)
.

1. Then for every N > 1 and every ORN design on N nodes that guarantees throughput r,

the maximum latency is at least Ω(L∗orn(r,N)).

2. Furthermore, for infinitely many network sizes N there exists an ORN design on N

nodes that guarantees throughput r and whose maximum latency is O(L∗orn(r,N)).

As a lower bound, Theorem 1.1 is restated and proved in Section 5.1. Our proof of

Theorem 1.2 is split into two families of ORN designs, each of which we describe formally in

Sections 3.1 and 3.2. However, we first provide a high-level sketch of the main technical ideas

behind our designs.

Our design is easiest to describe when the throughput r = 1
2h

and N = ph for positive

integer h and prime number p. In that case, we use a design that we call the Elementary

Basis Scheme (EBS) which identifies the set of N nodes with elements of the group1 (Z/(p))h.

Let e be the elementary basis consisting of the columns of the h× h identity matrix. EBS

uses a connection schedule whose timeslots cycle through the nonzero scalar multiples of the

elementary basis, hence the name Elementary Basis Scheme. In a timeslot devoted to s · ei,

the network is configured to allow each node a to send to a+ s · ei. Over the course of one

1This should be thought of as the h-dimensional vector space over Z/(p). While we describe taking the
elementary basis for simplicity here, the EBS scheme itself does not require Z/(p) to be a field, thus we use
the word group here. This is further described in Section 3.1.1.
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complete cycle, any two nodes can be connected by a “direct path” consisting of h physical

hops (or fewer) that modify the coordinates of the source node one by one until they match

the coordinates of the destination. The EBS routing protocol constructs a random path

connecting a given source and destination using VLB: it chooses a random intermediate node

and concatenates two “semi-paths”: the direct paths from the source to the intermediate

node and from the intermediate node to the destination.

To generalize this design to all non-integer values of 1
2r

, we need to enhance EBS so that a

constant fraction of semi-paths use h physical hops and a constant fraction use h+ 1 physical

hops. This necessitates a modified ORN design that we call the Vandermonde Basis Scheme

(VBS). Assume r = h+ 1− ε for h ∈ N, 0 < ε < 1, and that N = ph+1 for prime p, so that

the nodes can be identified with the vector space Fh+1
p . Instead of one basis corresponding to

the identity matrix, we now use a sequence of distinct bases each corresponding to a different

Vandermonde matrix. In addition to the single-basis semi-paths (which now constitute h+ 1

physical hops), this enables the creation of “hop-efficient” semi-paths composed of h physical

hops belonging to two or more of the Vandermonde matrices in the sequence. Hop-efficient

semi-paths have higher latency than direct paths, but we opportunistically use only the ones

with lowest latency to connect a subset of terminal pairs, joining the remaining pairs with

direct semi-paths. A full routing path is then defined to be the concatenation of two random

semi-paths, as before.

Proving that the VBS routing protocol guarantees throughput r boils down to quantifying,

for each physical edge e, the net effect of shifting load from direct paths that use e to

hop-efficient paths that avoid e and vice-versa. The relevant sets of paths in this calculation

can be parameterized by unions of affine subspaces of Fh+1
p , and the use of Vandermonde

matrices in the connection schedule gives us control over the dimensions of intersections of

these subspaces, and thus over the size of their union.

We discuss the Elementary Basis Scheme (EBS) in Section 3.1, and the Vandermonde
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Basis Scheme (VBS) in Section 3.2. When combined, EBS and VBS give a tight upper

bound on maximum latency for all constant guaranteed throughput values r, and prove

Theorem 1.2. We address how EBS and VBS can be modified for d-regular networks with

d > 1 in Section 3.3.

3.1 Elementary Basis Scheme

3.1.1 Connection Schedule

In EBS’s connection schedule, each node participates in a series of sub-schedules called round

robins. Consider a cyclic group H = Z/(p) acting freely on a set S of n nodes, where we

denote the action of t ∈ H on i ∈ S by i + t. A round robin for S is a schedule of p − 1

timeslots in which each element of S has a chance to send directly to each other element

exactly once; during timeslot t ∈ [p−1] node i may send to i+ t. The number of round-robins

in which each EBS node participates is controlled by a tuning parameter h which we refer

to as the order. Similar to the previous section, h will be half of the maximum number of

physical hops in an EBS path.

Let p = N1/h, so that the node set [N ] is in one-to-one correspondence with the elements of

the group Hh. Each node a ∈ [N ] is assigned a unique set of h coordinates (a0, a1, ..., ah−1) ∈

Hh and participates in h round robins, each containing the n nodes that match in all but one

of the h coordinates. We refer to these round robins as phases of the EBS schedule. One full

iteration of the EBS schedule, or epoch, contains h phases. Because each phase is a round

robin among n nodes, each phase takes p− 1 timeslots, resulting in an overall epoch length

of T = h(p− 1) = h(N1/h − 1).

We now describe the EBS schedule formally. We express each node i as the h-tuple
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Timeslot
0 1 2 3

N
o
d
e

A,A B,A C,A A,B A,C
B,A C,A A,A B,B B,C
C,A A,A B,A C,B C,C
· · · · ·
· · · · ·

B,C C,C A,C B,A B,B
C,C A,C B,C C,A C,B

Figure 3.1: Connection schedule for 9 nodes in h = 2 EBS, as well as part of the corresponding
virtual topology. Physical edges used on semi-paths from ((A,A),0) to other nodes are
highlighted in green.

(i0, i1, . . . , ih−1) ∈ (Z/p)h. Similarly, we identify each permutation πk of the connection

schedule using a scale factor s, 1 ≤ s < p, and a phase number x, 0 ≤ x < h, such that

k = (p− 1)x+ s− 1. Let ex denote the standard basis vector whose xth coordinate is 1 and

all other coordinates are 0. The connection schedule is then π(p−1)x+s−1(i) = i + sex = j.

Since e is the standard basis, jy = iy for y 6= x, and jx = ix + s (mod p).

The EBS schedule can be seen as simulating a flattened butterfly graph between nodes

[31]. This schedule generalizes existing ORN designs which have thus far all been based

on the same schedule: a single round robin among all nodes, simulating an all-to-all graph.

When h = 1, the EBS schedule reduces to this existing schedule. On the other hand, when

h = log2(N), the EBS schedule simulates a direct-connect hypercube topology. By varying h,

in addition to achieving these two known points, the EBS family includes schedules which

achieve intermediate throughput and latency tradeoff points.

3.1.2 Oblivious Routing Scheme

The EBS oblivious routing scheme is based around Valiant load balancing (VLB) [47]. VLB

operates in two stages: first, traffic is routed from the source to a random intermediate node

in the network. Then, traffic is routed from the intermediate node to its final destination.
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This two-stage design ensures that traffic is uniformly distributed throughout the network

regardless of demand. We refer to the path taken during an individual stage as a semi-path,

and we use the same algorithm to generate semi-paths in either stage.

To create a semi-path between a node (a, t) and (b, t′) for some t′ ≈ t+ T , the following

greedy algorithm is used starting at (a, t): for the current node in the virtual topology, if

the outgoing physical edge leads to a node with a decreased Hamming distance to b (i.e. it

matches b in the modified coordinate), traverse the physical edge. Otherwise, traverse the

virtual edge. This algorithm terminates when it reaches a node (b, t′) for some t′. Note that

because there are h coordinates, the largest Hamming distance possible is h, and the longest

semi-paths use h physical links, and take no more than T timesteps to complete.

In order to construct a full path from (a, t) to (b, t∗) for some t∗ ≈ t+ 2T , first select an

intermediate node c in the system uniformly at random. Then, traverse the semi-path from

(a, t) to (c, t′), where t′ is the timeslot at which the semi-path reaches node c. If t′ < t+ T ,

traverse virtual edges until node (c, t+ T ) is reached. Finally, traverse the semi-path from

(c, t+ T ) to (b, t∗).

The EBS oblivious routing scheme is formed as follows: for Ra,b,t, for all intermediate

nodes c, construct the path from (a, t) to (b, t∗) via c as described above, and assign it the

value 1
N

. Assign all other paths the value 0. Because there are N possible intermediate nodes,

each of which is used to define one path from (a, t) to (b, t∗), this routing scheme defines one

unit of flow.

3.1.3 Latency-Throughput Tradeoff of EBS

Proposition 1. For each r ≤ 1
2

such that h = 1
2r

is an integer, and each N > 1 such that

N1/h is an integer, the EBS design of order h on N nodes guarantees throughput r and has
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maximum latency 1
r

(N2r − 1).

The proof of Proposition 1 is contained in the following two subsections, which address

the latency and throughput guarantees respectively.

Latency

Recall that h = 1
2r

and that p = N1/h = N2r, so the latency bound in Proposition 1 can be

written as 2h(p− 1). Since the epoch length is T = h(p− 1), the latency bound asserts that

every EBS routing path completes within a time interval no greater than the length of two

epochs. An EBS path is composed of two semi-paths, so we only need to show that each

semi-path completes within the length of a single epoch.

Let (a, t) denote the first node of the semi-path. If t occurs at the start of a phase, then

after x phases have completed the Hamming distance to the semi-path’s destination address

must be less than or equal to t− x; consequently the semi-path completes after at most h

phases, as claimed. If t occurs in the middle of a phase using basis vector ex, let s denote

the number of timeslots that have already elapsed in that phase. Either the semi-path is

able to match the pth destination coordinate before the phase ends, or the coordinate can be

matched during the first s timeslots of the next phase that uses basis vector ep. In either

case, the pth destination coordinate will be matched no later than timeslot t + T , and all

other destination coordinates will be matched during the intervening phases.

Throughput

Lemma 1. Given an arbitrary demand function D requesting throughput r = 1
2h

on N nodes,

we may generate demand function D̂′ with the following properties:
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1. for all t ∈ [N ], D̂′(t) has row and column sums exactly equal to r

2. D̂′(t) bounds D(t) above.

Proof. We can generate D̂′ by greedily increasing matrix entries by the maximum amount

possible, while still maintaining the property that row and column sums are no more than

r, until all row and column sums exactly equal r. Due to the latter condition, it follows

that f(R, D̂′) bounds f(R,D) above; thus F (f(R, D̂′), e) ≥ F (f(R,D), e). Henceforward,

we focus on proving F (f(R, D̂′), e) ≤ 1.

Lemma 2. Let R be the EBS routing scheme for a given N and h. For all demand functions

D requesting throughput at most 1
2h

, the flow f(R,D) is feasible.

Proof. Due to Lemma 1, we solely focus on the case when arbitrary demand function D

has row and column sums exactly equal to r = 1
2h

. Consider an arbitrary physical edge

e ∈ Ephys from (i, te) to (j, te + 1), where te is the timeslot during which the edge begins. Let

te ≡ (xe, se) such that xe is the phase in the schedule corresponding to te, and se is the scale

factor used during te. We wish to show that F (f(R,D), e) ≤ 1.

Valid paths in EBS include two components: the semi-path from the source node to an

intermediate node, and the semi-path from the intermediate node to the destination node.

We can therefore decompose the paths in F (f(R,D), e) into two components as follows: first,

we define R̂′, a routing protocol defined such that R̂′a,b,t(P ) equals 1 if P is the semi-path

from (a, t) to (c, t′) for some t′, and 0 otherwise. Because EBS uses the same routing strategy

for both source-intermediate semi-paths and intermediate-destination semi-paths, R̂′ is used

for both components. Then, we introduce two demand functions: D̂′a→c represents demand

on semi-paths from origin nodes to intermediate nodes, while D̂′c→b represents demand on

semi-paths from intermediate nodes to destination nodes. Note that for all physical edges e,

F (f(R,D), e) = F (f(R̂′, D̂′a→c), e) + F (f(R̂′, D̂′c→b), e).
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To characterize D̂′a→c, note that regardless of source and destination, R samples intermediate

nodes uniformly. Therefore, for all (t, a, c) ∈ Z× [N ]× [N ],

D̂′a→c(t, a, c) =
1

N

∑
u∈[N ]

D(t, a, u) =
r

N

Similarly, because semi-paths from an intermediate node to the destination always commence

exactly T timeslots after the starting vertex, we can characterize D̂′c→b(t, b, c) as follows:

D̂′c→b(t, c, b) =
1

N

∑
u∈[N ]

D(t− T, u, b) =
r

N

Note that D̂′a→c = D̂′c→b = D̂ALL, where D̂ALL is the uniform all-to-all demand func-

tion D̂ALL(t, a, b) = r
N

for all (t, a, b) ∈ Z × [N ] × [N ]. Therefore, F (f(R,D), e) ≤

2F (f(R̂′, D̂ALL), e).

Claim 1. For all e ∈ Ephys, there are exactly Tph−1 triples (t, a, c) such that the semi-path

from (a, t) to (c, t′) (for some t′) traverses e.

Proof of claim. Denote the endpoints of edge e by (i, te) and (i+s ·ex, te+ 1). The semi-path

of a triple (t, a, c) traverses e if and only if the semi-path first routes from (a, t) to (i, te), and

(c− a)x = s.

Because semi-paths complete in T timeslots, only semi-paths beginning in timeslots in

the range [te − T + 1, . . . , te] could possibly reach node (i, te) and traverse e. For every

t ∈ [te − T + 1, . . . , te], where t ≡ (xt, st), we can construct ph−1 such triples as follows: First,

we select d, a vector representing the difference between a and c in the triple we will construct.

To satisfy the second condition on (t, a, c), we must set dx = s. However, the remaining h− 1

indices of d can take on any of the n possible values. Thus, there are ph−1 possibilities for d.

For any semi-path (t, a, c) such that c− a = d, the timeslots in which a physical edge is

traversed can be determined from d. For any given timeslot t′ ≡ (x′, s′) such that t ≤ t′ < t+T ,

a physical edge is traversed if and only if dx′ = s′. These are the edges that decrease the
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Hamming distance to b by correctly setting coordinate p. We thus construct a as follows: For

every index x, if (dx, x) is between kt and ke − 1 inclusive, we set ap = ix − dx. Otherwise,

we set ax = ix. Once we have constructed a, c is simply a+d. This choice of a and c ensures

that by timeslot te, the semi-path from (a, t) to (b, t′) reaches network node i by the phase

before timeslot te.

For each of the T timeslots for which semi-paths originating in the given timeslot may

traverse e, there are ph−1 such semi-paths. This gives a total of Tph−1 semi-paths that traverse

e over all timeslots. Note that because each such semi-path has a unique (t,d), none of the

constructed semi-paths are double counted. In addition, because the (t,d) pair determines

the timeslots in which physical links are followed, and because there is only one physical

link entering and leaving each node during each timeslot, there cannot be more than one

choice of a for a given (t,d) pair such that the semi-path includes (i, te). Because the Tph−1

count includes all possible choices of d for every timeslot, all semi-paths that traverse e are

accounted for.

Now we continue with the proof of Lemma 2. Since exactly Tph−1 triples (t, a, c) correspond

to semi-paths that traverse e, and D̂ALL assigns r
N

flow to each semi-path, F (f(R̂′, D̂ALL), e) =

r
N
Tph−1 = r

N
h(p− 1)ph−1. Thus:

F (f(R,D), e) ≤ 2F (f(R̂′, D̂ALL), e) = 2
r

N
h(p− 1)ph−1

< 2
r

N
hph = 2

r

N
h(N1/h)h = 2rh

When r ≤ 1
2h

, for all physical edges e, F (f(R,D, e)) ≤ 1. Thus, f(R,D) is feasible.
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3.1.4 Tightness Guarantees

Lemma 3. For 0 < r ≤ 1
2

let h =
⌊

1
2r

⌋
and ε = h + 1 − 1

2r
. The EBS design of order h

attains maximum latency at most C · L∗orn(r,N), except when

ε ≥ 2

√
2h

π

(
2e

C

)h
.

Proof. Theorem 1.1 (proved in Section 5.1) and Proposition 1 together show the following

about the maximum latency of EBS compared to the maximum latency lower bound:

LEBS ≤ 2hN1/h

L∗orn(r,N) ≥ h

e
(εN)1/h


√

πh
2

4h

1/h

Note that this interpretation of the maximum latency lower bound is taken from equation

(5.1) in the proof of Theorem 1.1.

Suppose we wish to assert LEBS/L
∗
orn(r,N) ≤ C. Given C and h, we will derive the

possible values of ε for which this assertion holds.

C ≥ 2hN1/h

h
e
(εN)1/h

(√
πh
2

4h

)1/h
=

2e(
ε
√
πh/2

4h

)1/h

ε
√
πh/2

4h
≥
(

2e

C

)h
ε ≥ 2

√
2h

π

(
2e

C

)h
.

When ε falls outside this range, the maximum latency of the EBS design is far from

optimal. In the following sections we present and analyze an ORN design which gives a

tighter upper bound when ε is very small and falls outside this range, in other words when

ε < 2
√

2h
π

(
2e
C

)h
.
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3.2 Vandermonde Basis Scheme

In order to provide a tight bound when ε is very small, we define a new family of ORN

designs which we term the Vandermonde Basis Scheme (VBS). VBS is defined for values of

N which are perfect powers of prime numbers. We begin by providing some intuition behind

the design of VBS.

For h =
⌊

1
2r

⌋
and ε = h + 1 − 1

2r
, a small value of ε indicates that r is slightly above

1
2(h+1)

. This indicates that the average number of physical hops in a path can be at most

slightly below the even integer 2(h+ 1). EBS is only able to achieve an average number of

physical hops equal to an even integer as N becomes sufficiently large. In small ε regions,

the difference between the highest average number of physical hops theoretically capable of

guaranteeing r throughput and the average number of physical hops used by EBS approaches

2. This suggests that EBS achieves a throughput-latency tradeoff that favors throughput

more than is necessary in these regions, penalizing latency too much to form a tight bound. A

more effective ORN design for these regions would use paths with 2(h+ 1) physical hops, but

mix in sufficiently many paths with fewer physical hops to ensure that the average number of

physical hops per path is at most 2(h+ 1− ε).

VBS achieves this by employing two routing strategies for semi-paths alongside each other.

The first strategy, single-basis (SB) paths, resembles the semi-path routing used by EBS

for h′ = h + 1. The second strategy, hop-efficient (HE) paths, will rely on the fact that

VBS’s schedule regularly modifies the basis used to determine which nodes are connected

to one another. HE paths will consider edges beyond the current basis, enabling them to

form semi-paths between nodes using only h hops, even when this is not possible within a

single basis. The more future phases are considered, the more nodes can be connected by HE

paths. This tuning provides a high granularity in the achieved tradeoff between throughput

and latency, and enables a tight bound in regions where ε is small.
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We define VBS for N = ph+1 such that p is a prime number. The connection schedule

and routing algorithm of VBS depend on a parameter δ, which represents a target for the

fraction of semi-paths that traverse HE paths. We later describe how to set Q, the number

of future phases considered for HE path formation, such that the number of destinations

reachable by HE paths is approximately δN .

3.2.1 Connection Schedule

Before describing the connection schedule of VBS, it is instructive to revisit the schedule

of EBS. EBS’s schedule consists of h′ phases. Each of these phases is defined based on

an elementary basis vector ex, connecting each node i to nodes i + sex for all possible

nonzero scale factors s. VBS is defined similarly, except instead of elementary basis vectors,

Vandermonde vectors (to be defined in the next paragraph of this section) are used to form

the phases. In addition, rather than using a single basis, the VBS connection schedule is

formed from a longer sequence of phases, with any set of h+ 1 adjacent phases corresponding

to a basis.

As in EBS, each node a is assigned a unique set of h+ 1 coordinates (a0, a1, ..., ah), each

ranging from 0 to p − 1. This maps each node to a unique element of Fh+1
p . We identify

each permutation πk of the connection schedule using a scale factor s, 1 ≤ s < p and a

phase number x, 0 ≤ x < p, such that k = (p− 1)x+ s− 1. Each phase p is formed using

the Vandermonde vector v(x) = (1, x, x2, ..., xh). This produces the connection schedule

π(p−1)x+s−1(i) = i+ sv(x).
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3.2.2 Oblivious Routing Scheme

As with EBS, VBS’s oblivious routing scheme is based around Valiant Load Balancing (VLB).

First, traffic is routed along a semi-path from the source to a random intermediate node in

the network, and then traffic is routed along a second semi-path from the intermediate node

to its final destination. As in EBS, the same algorithm is used to generate semi-paths in

both stages of VLB. However, unlike in EBS, semi-paths are only defined starting at phase

boundaries. Thus, the first step of a VBS path is to traverse up to p− 2 virtual edges until

a phase boundary is reached. Semi-paths are then defined for a given (q, a, c) triple, where

the starting phase number q = t/(p − 1) for some timeslot t at the beginning of a phase

(hence t is divisible by p− 1). Following the initial virtual edges to reach a phase boundary,

we concatenate the semi-path from the source to the intermediate node, followed by the

semi-path from the intermediate node to the destination.

Depending on the current phase and the source-destination pair, we either route semi-

paths via a single-basis path or a hop-efficient path. The routing scheme always selects a

hop-efficient semi-path when one is available, and otherwise it selects a single-basis path.

Based on a careful definition of the number of phases Q, we show how to ensure that hop-

efficient paths are available a δ fraction of the time, for a parameter δ that we define later.

We describe both semi-path types below.

Single-basis paths The single-basis path, or SB path, for a given (q, a, c) is formed

as follows: First, we define the distance vector d = c − a, as well as the basis Y =(
v(q),v(q + 1), ...,v(q + h)

)
. Note that the vectors in the basis Y are those used to form the

h+ 1 phases beginning with phase q. Then, we find the basis representation of d using basis

Y , s = Y −1d. Over the next h + 1 phases, for every timeslot t′ ≡ (x′, s′), if s′ = sx′ , the

physical edge is traversed. Otherwise, the virtual edge is traversed. This strategy corresponds

to traversing d through its decomposition in basis Y , beginning at node a and ending at
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node c.

Although this algorithm for SB paths completes within h + 1 phases, following this

virtual edges are traversed for a further Q phases. This ensures that both single-basis and

hop-efficient paths (described below) each take h+ 1 +Q phases to complete. Note that it is

possible for an SB path to have fewer than h+ 1 hops, although this becomes increasingly

rare as N grows without bound.

Hop-efficient paths A hop-efficient path, or HE path, is formed as follows: First, for h+ 1

phases, only virtual edges are traversed. This ensures that the physical hops of HE and SB

paths beginning during the same phase q use disjoint sets of vectors (assuming p > h+ 1 +Q),

which simplifies later analysis. Following this initial buffer period, h phases are selected out

of the next Q phases, and one physical hop is taken in each selected phase. During all other

timeslots within the Q phases, virtual hops are taken.

For a given starting phase q and starting node a, there are
(
Q
h

)
(p− 1)h possible HE paths.

As stated earlier, we will show that HE paths are available a δ fraction of the time. Because

there are a total of N destinations reachable from a, we would then like δN destinations

to be reachable by HE paths. Ignoring for now the possibility of destinations reachable by

multiple HE paths, we set Q to the lowest integer value such that:

(
Q

h

)
(p− 1)h ≥ δN ⇐=

(
Q

h

)
≥ δp

Note that for this value of Q,
(
Q−1
h

)
< δn. For some (q, a, c), more than one HE path

may exist. In this case, an arbitrary selection can be made between these multiple paths; the

specific path chosen does not affect our analysis of VBS.
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3.2.3 Latency-Throughput Tradeoff of VBS

Latency

A VBS path begins with at most p − 2 virtual edges traversed until a phase boundary is

reached. Following this, the first semi-path immediately begins, followed by the second

semi-path. Because both SB and HE paths are defined to take h + 1 + Q phases, the

latency of a single semi-path is (p− 1)(h+ 1 +Q). This gives a total maximum latency of

(p− 2) + 2(p− 1)(h+ 1 +Q) = (p− 1)(3 + 2h+ 2Q)− 1 for VBS paths.

Throughput

Lemma 4. Let R be the VBS routing scheme for a given N , h, and δ, such that δ ≤
1

4(h+1)(1+ 1
2h

)2
. For all demand functions D requesting throughput at most 1

2(h+1−ε) , where

ε = 1
4
δ, the flow f(R,D) is feasible.

Proof. Consider an arbitrary demand function D requesting throughput at most r, and

consider an arbitrary physical edge e ∈ Wphys from (i, te) to (j, te + 1), where te is the

timeslot during which the edge begins. Let te ≡ (xe, se) such that xe is the phase in the

schedule corresponding to te, and se is the scale factor used during te. We wish to show that

F (f(R,D), e) ≤ 1.

As in our proof of the throughput of EBS (Lemma 2), we begin by inflating D into D̂′.

Similarly, we define R̂′, the routing protocol for semi-paths, and we decompose f(R, D̂′) into

f(R̂′, D̂′a→c) and f(R̂′, D̂′c→b). Note that because semi-paths begin only on phase boundaries,

R̂′ in this case does not strictly follow our definition for an oblivious routing scheme. Instead,

we define R̂′a,c,q using phases q, rather than timeslots t, for the domain. The path used for

R̂′a,c,q begins during the first timeslot of phase q. This is reflective of the definitions for
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semi-paths in VBS.

To generate D̂′a→c, note that R first batches (a, c, t) triples over the p − 1 timeslots

preceding an epoch boundary, before sampling intermediate nodes uniformly. Therefore, for

all (q, a, c)

D̂′a→c(q, a, c) =
1

N

∑
t∈[p−1]

∑
u∈[N ]

D̂′(q(p− 1)− t, a, u) =
(p− 1)r

N

Similarly, because semi-paths from an intermediate node to the destination always

commence exactly h + 1 + Q phases after the beginning of the first semi-path, we can

define D̂′c→b(t, b, c) as follows:

D̂′c→b(q, c, b) =
1

N

∑
t∈[p−1]

∑
u∈[N ]

D̂′((q − h− 1−Q)(p− 1)− t, u, b) =
(p− 1)r

N

Note that D̂′a→c = D̂′c→b = D̂ALL, where D̂ALL is the uniform all-to-all demand func-

tion D̂ALL(q, a, b) = (p−1)r
N

for all (q, a, b) ∈ Z × [N ] × [N ]. Therefore, F (f(R,D), e) ≤

2F (f(R̂′, D̂ALL), e).

To calculate F (f(R̂′, D̂ALL), e), we compute the number of (q, a, c) triples whose semi-

paths traverse edge e. We calculate this number as follows: First, we calculate #SB, which

represents the number of (q, a, c) triples that have an SB path that traverses edge e. Then, we

calculate #missing, the number of such triples that have an HE path available (and thus do not

traverse e). Finally, we determine #HE, the number of triples that traverse e using an HE path.

The total flow traversing edge e is then F (f(R̂′, D̂ALL), e) = (p−1)r
N

(#SB −#missing + #HE).

To find #SB, we use reasoning similar to that used in Lemma 2. In order for a given

(q, a, c) to have an SB path that traverses edge e, the SB path for (q, a, c) must reach node

(i, t), then traverse edge e. The only values of q for which this is possible are those in the
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range qe − h ≤ q ≤ qe. For each of these q, we can generate ph distinct (q, a, c) triples that

have SB paths that traverse edge e as follows. First, select an arbitrary s such that sqe−q = se.

Then, set a = i− Σqe−1
q′=q sq′−qv(q′), and c = a+ Σq+h

q′=qsq′−qv(q′). In this case, s corresponds to

a distance vector between a and c, expressed in terms of the basis used for SB paths starting

in phase q. Because of how a is set, it is clear that the SB path for (q, a, c) must traverse

(i, t). In addition, because sqe−q = se, the SB path will traverse edge e instead of another

edge during the same phase.

For a given q, there are ph possible values for s, because all but one of its h+ 1 elements

can be set to any value in [p]. There are (h + 1) possible values for q, giving a total of

#SB = (h+ 1)ph.

To find #missing, we compare the distance vectors of (q, a, c) triples that have SB paths

which traverse e with those of (q, a, c) triples that have valid HE paths. Each vector found

in the overlap between these two sets corresponds to one (q, a, c) triple that contributes to

#missing. To reason about the former set of vectors, we return to the construction of s used

to find #SB. For a given starting phase q, each s such that sqe−q = se represents a distance

vector that can traverse e, expressed in terms of the basis used for SB paths starting in phase

q. We can construct this basis as Y =
(
v(q),v(q+ 1), ...,v(q+h)

)
. For each s, d = Y s is the

same distance vector expressed using the elementary basis. The range of possible distance

vectors d reachable while traversing e forms De, an h-dimensional affine subspace of Fh+1
p

that is parallel to We, the linear subspace spanned by the set Y \ {v(qe)}.

Next, we consider which triples have valid HE paths. For a given starting phase q, there

are Q phases which are considered for forming HE paths. Let I be a set of h phase numbers

chosen from these Q phases, and let V (I) be the linear subspace spanned by the vectors

corresponding to the phase numbers in I. There are
(
Q
h

)
ways of choosing such a set I. For

each possible choice, V (I) forms an h-dimensional linear subspace in F h+1
p , corresponding to

the distance vectors reachable via HE paths using the chosen phases. (Note that V (I) must
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be h-dimensional because every h distinct Vandermonde vectors are linearly independent.)

Because V (I) and We are spanned by distinct sets of h Vandermonde vectors, these linear

subspaces are not equivalent, implying that V (I) and De are not parallel. Thus, V (I) ∩De

is an affine subspace with dimension h− 1 and contains ph−1 distance vectors.

Some distance vectors lie in more than one such intersection. In order to avoid overcounting

#missing, we must remove at least this many vectors from our count. Given two sets of h

chosen phase numbers I and J , V (I) and V (J) form two different linear subspaces of Fh+1
p .

As linear subspaces, both I and J contain the zero vector, as does the (h− 1)-dimensional

I ∩ J . De does not contain the zero vector, so De ∩ I ∩ J can only be (h− 2)-dimensional,

containing ph−2 distance vectors. There are fewer than
(
Q
h

)2
ways of choosing two distinct

sets I and J .

Thus, for a given starting q, there are fewer than
(
Q
h

)
ph−1 −

(
Q
h

)2
ph−2 distance vectors

in the overlap between De and the union of all possible V (I). Because there are h + 1

possibilities for the starting q, this gives the following lower bound for #missing:

#missing > (h+ 1)

((
Q

h

)
ph−1 −

(
Q

h

)2

ph−2

)

≥ (h+ 1)

(
(δp)ph−1 −

((
Q− 1

h

)
Q

Q− h

)2

ph−2

)

> (h+ 1)

(
δph −

(
δp

Q

Q− h

)2

ph−2

)

= (h+ 1)

(
δph − δ2ph

(
Q

Q− h

)2
)

To find #HE, note that a given (q, a, c) can only traverse edge e if qe−h−Q ≤ q < qe−h,

since qe must be in the set of Q phases considered for HE paths for (q, a, c). For a given q,

we can construct an HE path by selecting h− 1 additional phases from the Q− 1 remaining

phases, and then selecting one of the p− 1 edges within that phase to traverse. Some of these
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paths may lead to the same destination, causing an overcount, but it is fine to overcount

#HE slightly.

#HE ≤ Q

(
Q− 1

h− 1

)
(p− 1)h−1

= Q

(
Q− 1

h

)
h

Q− h
(p− 1)h−1

< δph
Q

Q− h
(p− 1)h−1

< δhph
Q

Q− h

Now that we have found #SB, #missing, and #HE, we can finally bound F (f(R,D), e):

F (f(R,D), e) ≤ 2F (f(R̂′, D̂ALL), e)

= 2
(p− 1)r

N
(#SB −#missing + #HE)

< 2
(p− 1)r

N

(
(h+ 1)ph − (h+ 1)

(
δph − δ2ph

(
Q

Q− h

)2
)

+ hδph
Q

Q− h

)

= 2
(p− 1)r

N
(h+ 1)ph

(
1−

(
δ − δ2

(
Q

Q− h

)2
)

+
h

h+ 1
δ

Q

Q− h

)

< 2r(h+ 1)

(
1− δ

(
1− h

h+ 1

Q

Q− h

)
+ δ2

(
Q

Q− h

)2
)
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For Q ≥ 2h2 − h, Q
Q−h ≤

h+ 1
2

h
. This gives:

F (f(R,D), e) < 2r(h+ 1)

(
1− δ

(
1− h

h+ 1

h+ 1
2

h

)
+ δ2

(
h+ 1

2

h

)2
)

= 2r(h+ 1)

(
1− δ

(
1−

h+ 1
2

h+ 1

)
+ δ2

(
1 +

1

2h

)2
)

= 2r(h+ 1)

(
1− 1

2

1

h+ 1
δ + δ2

(
1 +

1

2h

)2
)

=
1

2(h+ 1− ε)
2(h+ 1)

(
1− 1

2

1

h+ 1
δ + δ2

(
1 +

1

2h

)2
)

=
1

h+ 1− ε

(
h+ 1− 1

2
δ + (h+ 1)δ2

(
1 +

1

2h

)2
)

≤ 1

h+ 1− ε
(h+ 1− ε)

F (f(R,D), e) < 1

Note that because of how we set ε and restrict δ, ε ≤ 1
2
δ− (h+ 1)δ2(1 + 1

2h
)2. Because the

amount of flow traversing any physical edge e is less than 1, the flow f(R,D) is feasible.

3.2.4 Tightness Guarantees

Theorem 2. For all r ∈ (0, 1/2], there is a VBS design or an EBS design which guarantees

throughput r and uses maximum latency

Lmax ≤ O(L∗orn(r,N)).

Proof. The VBS design of order h with parameter δ gives maximum latency L ≤ 2(h+ 1)(p−

1) + 2Q(p− 1) for h =
⌊

1
2r

⌋
and

(
Q
h

)
≥ δp, as long as δ ≤ 1

4(h+1)(1+ 1
2h

)2
. Let ε = h+ 1− 1

2r
,

and set δ = 4ε.

We chose Q such that
(
Q−1
h

)
< δp and

(
Q
h

)
≥ δp. Then

(
Q
h

)
< δp Q

Q−h ≤ δ
h+ 1

2

h
, due to
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Q ≥ 2h2 − h. Hence Q ≤ h
(
δp h

h+(1/2)

)1/h
. We upper bound the max latency of VBS in the

following way.

Lmax ≤ max{(h+ 1)(p− 1) +Q(p− 1), (h+ 1)(p− 1) + (2h2 − h)(p− 1)}

≤ 2(h+ 1)(p− 1) + 2h2(p− 1) + h

(
4εp

h+ 1
2

h

)1/h

(p− 1)

≤ 2(h+ 1)p+ 2h2p+ hn(4εp)1/h
(

2h+ 1

2

)1/h

≤ (h+ 1)[2N1/(h+1) + hN1/(h+1) + (4εN)1/h
(

2h+ 1

2

)1/h

]

≤ O(h[hN1/(h+1) + (εN)1/h])

For sufficiently large N (determined by ε and h, both functions of r), the second term

will dominate. Thus, for large N:

Lmax ≤ O
(
h
[
(εN)1/h +N1/(h+1)

])
= O (L∗orn(r,N)) .

By Lemma 4, VBS only gives a tight latency bound when 4ε = δ ≤ 1
4(h+1)(1+ 1

2h
)2

. When

ε is greater than this value, we use EBS instead. By Lemma 3, EBS gives a factor C tight

bound when ε > 2
√

2h
π

(
2e
C

)h
. We check to make sure that there exists a constant C which

works for all ε > 1
4
· 1
4(h+1)(1+ 1

2h
)2
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2

√
2h

π

(
2e

C

)h
≤ 1

4
· 1

4(h+ 1)
(
1 + 1

2h

)2
2e

C

(
2

√
2h

π

)1/h

≤

(
1

16(h+ 1)
(
1 + 1

2h

)2
)1/h

C ≥ 2e

(
2

√
2h

π

)1/h(
16(h+ 1)

(
1 +

1

2h

)2
)1/h

C ≥ O

√h1/h((h+ 1)

(
2h+ 1

2h

)2
)1/h

 = O(1)

Since there exists such a factor C, the following holds for EBS in the regions of interest.

Lmax ≤ O
(
h
[
(εN)1/h +N1/(h+1)

])
= O (L∗orn(r,N))

3.3 EBS and VBS for Degree d > 1

Recall from Section 2.2 that an upper bound for 1-regular designs will only imply a similar

upper bound for d-regular designs if we can ensure that the routing scheme does not route

flow paths on multiple edges in the same “unrolled” segment of the 1-degree virtual topology.

EBS and VBS always route flow on paths which use at most 1 edge from each phase, where a

phase constitutes (p− 1) timeslots. Trivially, if d divides (p− 1), then these constructions

already have the property we need. However, even if d does not divide (p− 1), as long as

d < p− 1, we can modify EBS and VBS as follows.

We change the connection schedule to iterate through each phase twice before moving on

to the next. So for VBS, π(p−1)x+s−1(i) = i + sv(bx/2c). We also change the definition of
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single-basis and hop-efficient paths to use exclusively even-numbered phases or exclusively

odd-numbered phases, depending on whether the next phase starts after the request originates.

With this modification, single-basis and hop-efficient paths always use physical edges that

occur at least (p− 1) timeslots apart from each other. Therefore, in the “rolled up” virtual

topology, our flow paths will always use at most one physical edge per timeslot. This at most

doubles the maximum latency, and does not affect throughput.
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CHAPTER 4

EXTENDING ORN DESIGNS TO SUFFICIENTLY LARGE N

In this chapter, we prove the following extension of Theorem 1.2.

Theorem 3. Given a guaranteed throughput value r ∈ (0, 1/2] for which 1
2r
6∈ Z, there exists

an integer N0 such that, for all integers N ≥ N0, there exists an ORN design on N nodes

which guarantees throughput r and achieves maximum latency within O (L∗orn(r,N)).

A major limitation of the EBS and VBS designs of Chapter 3 is that they are not defined

for all network sizes. The EBS design requires the number of nodes in the network, N , to be

a perfect hth power, where h = b 1
2r
c. The VBS design is even more restrictive: it requires

N to be a perfect (h+ 1)th power of a prime number. In practice the number of nodes in a

datacenter network would rarely satisfy these restrictions, so the EBS and VBS designs must

be regarded mainly as a theoretical exercise unless this limitation can be removed. In this

chapter, we remove this limitation on the network size. We show that there exist oblivious

reconfigurable network designs achieving maximum latency O(L∗orn(r,N)) for all sufficiently

large N , whenever 1
2r

is not an integer.

To shed light on the challenge of proving such a result, it helps to reflect on the constrast

between network designs using N nodes and algorithm designs with input size N . In algorithm

designs, it is common to define an algorithm first on special input sizes (e.g., when N is a

power of two) and then to extend the algorithm to all N by “padding” the input. For example,

Strassen’s matrix multiplication algorithm works by reducing N -by-N matrix multiplication

to seven instances of
(
N
2

)
-by-

(
N
2

)
matrix multiplication and then solves those instances

recursively. This requires N to be a power of 2; to use the same algorithm when N lies

strictly between two powers of 2, one first pads the matrices with zeros until the number of

rows and columns equals the next power of 2 greater than N . The padding scheme works

because the extra zeros function as placeholders that have no effect on the relevant entries
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of the matrix product. In networking, there is no corresponding way to “pad a network”

with fictional nodes that have no effect on the actual physical nodes comprising the network.

Either one assigns physical nodes to play the role of the fictional ones — but then the load

on those physical nodes is affected — or one allocates no physical resources to do the work

of the fictional nodes, but this affects the physical nodes of the network when they try to

communicate using a routing path that goes through one of the fictional nodes.

In this chapter, we define a padding scheme that circumvents these difficulties and allows

us to extend the EBS and VBS network designs to all sufficiently large values of N . To do

so, we pad the network with “dummy nodes” until the total number of physical and dummy

nodes matches one of the network sizes for which EBS or VBS is defined. Then, rather than

allocating physical resources to do the work of the dummy nodes, we simply eliminate all

of the flow on routing paths that pass through dummy nodes. In order to ensure that the

resulting network design guarantees throughput r, in the padded network we use the EBS or

VBS design with throughput guarantee r/(1− δ), where δ > 0 is chosen to be small enough

that the maximum latency increases by only a constant factor. To prove that the guaranteed

throughput is indeed greater than or equal to r, we must show that in the worst case over

all potential traffic demand matrices, the fraction of flow that EBS or VBS routes through

dummy nodes (henceforth, “dummy flow”) will not exceed δ. It turns out that this step of

the analysis is sensitive to the placement of the dummy nodes, requiring us to identify a way

of placing dummy nodes such that for any individual source or destination node, the total

amount of dummy flow originating at that source (or terminating at that destination) is not

too large.

4.1 EBS Dummy Node Design
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4.1.1 Connection Schedule and Routing Scheme

Let h, ε be defined given r as before: h =
⌊

1
2r

⌋
and ε = h+ 1− 1

2r
. Let N be the number of

nodes we would like to run Dummy EBS on. That is, N is an integer that is not an integer

h-power.

Let M ≥ N be the smallest such M for which there exists an integer m and M = mh,

and consider the h-level EBS design on M nodes. By Proposition 1 and Lemma 2, this design

can guarantee throughput 1
2h

within max latency (2h+ 1)(m− 1)− 1 in a network of exactly

M nodes.

We will designate a set of potential dummy nodes D, and define the EBS dummy node

design at level h on N nodes in the following way: choose a subset D ⊆ D such that

N + |D| = M . All flow paths that do not travel through nodes in D remain untouched and

continue to route flow as specified by EBS on M nodes. Flow paths that travel through D

no longer send flow.

Note that this design will be able to guarantee a slightly smaller throughput value than

previously, and some node pairs and starting timeslots may have more flow attributed to

them by the routing scheme than others. To fix this second point, one can normalize the

amount of flow attributed to each pair by the minimum over all pairs.

To prove what throughput value this design guarantees, we will show that if we eliminate

all flow that would have been routed through nodes in D using EBS, no pair loses more than

a δ fraction of flow for sufficiently small δ.

Designate the following set D as the potential dummy node set,

D =

{(
i0, i1, ..., ih−2, `+

h−2∑
j=0

ij

)
: i0, ..., ih−2 ∈ [m] and ` ∈ {0, ..., h− 1}

}

Before we check that eliminating all flow on a, b, t triples that would have routed through
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D still guarantees a high enough throughput rate, we should first check to ensure that |D|

is large enough. That is, it must be at least M −N . Note that N cannot be smaller than

(m − 1)h, as otherwise there would be a smaller integer h-power M ′ with M > M ′ ≥ N .

Therefore, it is enough to show that |D| is at least mh − (m− 1)h.

Using the fundamental theorem of calculus, one can see that
∫ m
m−1 hx

h−1 = mh− (m− 1)h.

The integrand hxh−1 will always be no more than hmh−1, since x takes values in the interval

[m− 1,m]. Therefore,
∫ m
m−1 hx

h−1 ≤ hmh−1 = |D|.

4.1.2 Tightness Guarantees

Lemma 5. The EBS dummy node design on N nodes can guarantee throughput 1
2h

(
1− 2h2

m

)
and maximum latency (2h+ 1)(m− 1)− 1 for h =

⌊
1
2r

⌋
and M equal to the smallest integer

h-power larger than N , for sufficiently large N .

Proof. We can bound the guaranteed throughput rate by bounding the amount of flow

between any worst case triplet that goes through the set D. Since EBS uses Valiant Load

Balancing, we can bound the fraction of flow that gets eliminated by dummy nodes for

any triple a, b, t by using the total fraction of semi-paths that get eliminated when routing

semi-paths of a worst-case node a starting at timeslot t to all intermediate nodes vint.

Consider node a = (a0, ..., ah−1) and dummy node d = (d0, ..., dh−1) ∈ D, and suppose t

occurs in phase x. We would like to count the number of intermediate nodes vint for which

the semi-path from a to vint starting at timeslot t goes through d.

Suppose d and a match in all but one coordinate. Then in order for d to be on the

semi-path from a to vint starting at timeslot t, it must be the case that d and a are mismatched

in coordinate x+ 1, and that vint matched d in the (x+ 1)-th coordinate. There are mh−1
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such vint, leaving a 1
m

fraction with the property. If we choose all our dummy nodes from D,

then there are at most h dummy nodes that match a in all but the (x+ 1)-th coordinate.

Consider more generally if a d and a match in all but k consecutive coordinates, starting

at phase x + 1. If we choose all our dummy nodes from D, then there are at most hmk−1

such dummy nodes. And given such a dummy node, the fraction of vint that get eliminated

is at most 1
mk

.

Thus, if we pick all our dummy nodes from D, we can bound the fraction of flow δEBS

that gets eliminated at each node. Note that we gain a factor of 2 due to VLB, by applying

this argument for both semi-paths a→ vint and vint → b.

δEBS ≤ 2
h∑
k=1

1

mk
hmk−1 ≤ 2h

h∑
k=1

1

m
=

2h2

m

So, we can guarantee throughput

r ≥ 1

2h
(1− δEBS) ≥ 1

2h

(
1− 2h2

m

)
.

Since the above goes toward 1
2h

as M −→ ∞, if we wanted to guarantee a throughput

value r for which ε 6= 1, then the EBS dummy node design on any number of nodes N can

guarantee throughput r for sufficiently large N .

Lemma 6. Let r ∈ (0, 1
2
) be a throughput value and ε, h defined as usual; h =

⌊
1
2r

⌋
and

ε = h+ 1− 1
2r

. If ε ∈
[
1
2
· 1
16(h+1)(1+ 1

2h
)2
, 1
)
, then the EBS dummy node design on N nodes

achieves maximum latency O (L∗orn(r,N)) for sufficiently large N .

Proof. Let r ∈ (0, 1
2
) be given as above and let M be the smallest integer h-power larger than

or equal to N .
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Since ε < 1, then r < 1
2h

, meaning that for large enough N (and therefore M), r ≥
1
2h

(
1− 2h2

m

)
. Therefore for large enough N , the EBS dummy node scheme can guarantee

throughput r and achieve maximum latency (2h+ 1)(m− 1)− 1.

To show that (2h+ 1)(m− 1)− 1 ≤ O (L∗orn(r,N)), we use the fact that N ≥ (m− 1)h.

Therefore 2hN1/h is at least 2hm
(
1− h

m

)1/h
which is no more than a constant factor less

than (2h+ 1)(m− 1)− 1 for sufficiently large N .

Finally, when ε ≥ 1
2
· 1
16(h+1)(1+ 1

2h
)2

, by Proposition 1, the maximum latency 2hN1/h ≤

O (L∗orn(r,N)), completing our proof.

4.2 VBS Dummy Node Design

The Vandermonde Basis Scheme (VBS) described in Section 3.2 is a bit trickier to work

with. It requires the use of far more dummy nodes due to the primality requirement of N
1

h+1 ,

and it requires some additional tweaking of the schedule to ensure that dummy nodes stay

sufficiently well distributed throughout the network, due to the changing Vandermonde vector

phases. Additionally, it also requires individual analysis of both single-basis and hop-efficient

semi-path types.

4.2.1 Connection Schedule and Routing Scheme

Let h, ε be defined given r as before: h =
⌊

1
2r

⌋
and ε = h+ 1− 1

2r
. Let N be an integer that

is not a prime (h+ 1)-power. That is, there is no prime number q for which N = qh+1. Let

M > N be the smallest such M for which there exists a prime q and M = qh+1. First, we

define the set of possible dummy nodes D.

45



D =

{(
i0, i1, ..., ih−1, `+

h−1∑
j=0

ij

)
: i0, ..., ih−1 ∈ [q] and ` ∈ {0, ..., (h+ 1)q0.525 − 1}

}

We confirm that D is large enough by citing the following theorem about prime gaps.

Theorem 4. [Baker, Harman, Pintz 2001] [8] For all x > x0 , the interval [x− xθ, x]

contains at least one prime number for θ = 0.525.

Thus, it is sufficient to show that |D| is at least M −N ≤ qh+1 − (q − q0.525)h+1. Using

the fundamental theorem of calculus, it is clear that

qh+1 − (q − q0.525)h+1 =

∫ q

q−q0.525
(h+ 1)xhdx

≤ (h+ 1)qh(q0.525) = |D|

Restricted Vandermonde Vectors In order to ensure that dummy nodes are well

distributed throughout the network, we restrict the Vandermonde vectors of the VBS dummy

node design so that lines parallel to these vectors intersect D in a limited number of points.

In particular, we would like for each such line to contain no more than (h+ 1)q0.525 elements

of D. In order to prove sufficiently many of these Vandermonde vectors exist, let us examine

D more closely.

We can represent D as the following union

D =

(h+1)q0.525⋃
k=1

Dk

=

(h+1)q0.525⋃
k=1

{
~i : i0 + i1 + ...+ ih−1 + ih = k

}

We will call a Vandermonde vector bad if it belongs to the set D0 =
{
~i : i0 + i1 + ...+ ih−1

+ih = 0
}

, and otherwise we call the Vandermonde vector good. We will restrict our VBS
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connection schedule to use only good Vandermonde vectors. Observe that the vector ~v =

(1, α, α2, . . . , αh) is bad if and only if the equation 1 +α+α2 + . . .+αh−1 +αh = 0 is satisfied.

This is a polynomial equation of degree h in α, so there are at most h bad Vandermonde vectors

and at least q − h good ones. Since the VBS connection schedule requires Q Vandermonde

vectors where Q is the least integer satisfying
(
Q
h

)
≥ 4εq, there are sufficiently many distinct

good vectors so long as q > h/(1− 4ε).

If ~v is a good Vandermonde vector and L is any line parallel to ~v, then the intersection L∩D

contains at most (h+ 1)q0.525 elements. To see why, represent L as the set {~a+ r ·~v | r ∈ Fq}

for some ~a ∈ Fh+1
q and recall that D is partitioned into the sets

Dk =
{
~i | i0 + · · ·+ ih = k

}
with k ranging from 1 to (h + 1)q0.525. It suffices for us to prove that L ∩ Dk has at most

one element, for each k. The relation ~a+ r · ~v ∈ Dk holds if and only if
∑h

j=0(aj + rαj) = k.

Rewrite this equation as r
(∑h

j=0 α
j
)

= k −
∑h

j=0 aj , and observe that
∑h

j=0 α
j 6= 0 because

~v = (1, α, . . . , αh) is a good Vandermonde vector. Hence there is a unique r satisfying the

equation, and consequently L ∩Dk has exactly one element.

We define the VBS dummy node design at level (h+ 1) on N nodes in the following way:

let M be the smallest prime (h + 1)-power greater than or equal to N . Choose a subset

D ⊆ D such that N + |D| = M . All flow paths that do not travel through nodes in D remain

untouched and continue to route flow as specified by EBS on M nodes. Flow paths that

travel through D no longer send flow.

Note that in this definition, like in the EBS dummy node design, some node-timeslot

triples a, b, t may have more flow attributed to them by the routing scheme than others. To

fix this, one can again normalize the amount of flow attributed to each pair by the minimum

over all pairs.
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4.2.2 Tightness Guarantees

Lemma 7. Let r be a throughput rate achievable by the original VBS design. Then the

VBS dummy node design on N nodes can guarantee throughput at least r (1− δV BS) for

δV BS = 2(h+1)2

q0.475
and M equal to qh+1, the smallest prime (h+ 1)-power larger than or equal to

N .

Proof. Consider a node a = (a0, ..., ah) and starting timeslot t. Like in the proof of Lemma 5

we will bound the total fraction of vint for which the semi-path from a to vint starting at

timeslot t goes through some potential dummy node, d ∈ D. We will do this separately for

single basis and hop efficient semi-path types.

Bounding δ for single basis paths Consider the “first worst case”, when starting node a

and dummy node d are exactly 1 hop apart, using one of the q hops that occur in the phase

beginning next after timeslot t. Then if d is on the semi-path from (a, t) to vint, it is reached

on the first hop of the path. The fraction of vint which may be reached on a semi-path after

visiting d is 1
q
. The number of dummy nodes with this property with respect to a and t is at

most q0.525, by definition of the potential dummy node set D.

More generally, we consider the “kth worst case”, in which the dummy node d can be

reached within the next k phases from a starting at timeslot t. In this case, the fraction of

flow eliminated by d is at most 1
qk

and the amount of dummy nodes with this property is at

most (h+ 1)q0.525qk−1.

Putting all cases together, the maximum fraction of flow that gets eliminated from

single-basis semi-paths is at most
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δSB ≤ 2
h+1∑
k=1

1

qk
(h+ 1)q0.525qk−1

=
2(h+ 1)2

q0.475
= δV BS

Bounding δ for hop-efficient paths Consider a node a = (a0, ..., ah) and timeslot t. The

total number of hop-efficient semi-paths leaving (a, t) is
(
Q
h

)
qh. Meanwhile, we can bound

the number of semi-paths leaving (a, t) that pass through D in the following way: again

choose the h out of Q phases that the semi-path will take hops in. If the semi-path passes

through D, then in one of the h chosen phases, the edge chosen leads to a dummy node

d ∈ D. Note that in each phase, there are at most (h+ 1)q0.525 dummy nodes reachable by

one hop. So, we can bound the number of semi-paths which leave (a, t) and pass through

D by
(
Q
h

)
h(h+ 1)q0.525. (Note that this estimation overcounts paths which pass through D

multiple times.) So, including the factor 2 due to using 2 semi-paths per routing path, the

fraction of hop-efficent path flow that gets eliminated is at most

δHE ≤ 2 · h(h+ 1)q0.525

qh

≤ 2 · (h+ 1)2

q0.475
· 1

qh−1

≤ 2(h+ 1)2

q0.475
= δV BS

Lemma 8. Let r ∈ (0, 1
2
) be a throughput value and ε, h defined as usual; h =

⌊
1
2r

⌋
and

ε = h + 1 − 1
2r

. If ε ≤ 1
2
· 1
16(h+1)(1+ 1

2h
)2

, then the VBS dummy node design can guarantee

throughput r and achieve maximum latency O (L∗orn(r,N)) for all sufficiently large N .

Proof. Suppose we would like to guarantee throughput r. Then we need to find an r′ such that
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r′ (1− δV BS) = r, and show that (1) VBS works on throughput r′ for large enough M , and (2)

the maximum latency achieved by the VBS design on M nodes guaranteeing throughput r′ is

not significantly higher than L∗orn(r,N). That is, we’d like for L∗orn(r′,M) ≤ O(L∗orn(r,N)).

First, we’ll examine the relationship between r′ and r, and ε′ and ε.

r′
(

1− 2(h+ 1)2

q0.475

)
= r

r′ = r ∗ q0.475

q0.475 − 2(h+ 1)2

Recall that h =
⌊

1
2r

⌋
. r′ is set to be slightly larger than r, but note that it is small enough

for h′ = h. That is, h =
⌊

1
2r′

⌋
. Since r′ is larger than r, then ε′ will be slightly larger than ε.

We can write ε′ as a function of ε, h, and M below.

ε′ = h+ 1− 1

2r
(

q0.475

q0.475−2(h+1)2

)
= h+ 1− q0.475 − 2(h+ 1)2

2rq0.475

= h+ 1− 1

2r
+

2(h+ 1)2

q0.475

= ε+
2(h+ 1)2

q0.475

≤ 1

2
· 1

16(h+ 1)(1 + 1
2h

)2
+

2(h+ 1)2

q0.475

≤ 1

16(h+ 1)(1 + 1
2h

)2

The last two steps holds when we take M to be large enough. By ??, the VBS design can

guarantee throughput r′ when taken with large enough M .

To show that the VBS dummy design achieves maximum latency O (L∗orn(r,N)), recall

that N ≥M − (q − q0.525)h+1 ≥M − qh(h+ 1)q0.525. We compare L∗orn(r′,M) and L∗orn(r,N)
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in the following way.

L∗orn(r′,M) ≤ O(L∗orn(r,N))

⇐= M1/(h+1) +M1/h

(
ε+

2(h+ 1)2

q0.475

)1/h

≤ O

((
M

(
1− h+ 1

q0.475

))1/(h+1)

+ ε1/h
(
M

(
1− h+ 1

q0.475

))1/h
)

We will separately show that the ε-related terms are a constant apart from each other,

and that the M terms are a constant apart from each other (for large enough M).

For the ε-related terms, we would like for(
ε+

2(h+ 1)2

q0.475

)1/h

≤ O(ε1/h)

Note that

ε+
2(h+ 1)2

q0.475
≤ 2hε

=⇒
(
ε+

2(h+ 1)2

q0.475

)1/h

≤ 2ε1/h = O(ε1/h)

As long as M is large enough, this will hold.

Now consider the M terms,

M1/h and

(
M

(
1− h+ 1

q0.475

))1/h

.

To show these are a constant apart from one another, it is enough to show that for large

enough M ,
(

1− h+1
q0.475

)1/h
is at least a constant. This is true, as this value tends toward 1 as

M goes to infinity. The same holds true for
(

1− h+1
q0.475

)1/(h+1)

, found in the other relevant

M term.
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In total, this shows that using the VBS dummy node design, the tight throughput latency

tradeoff points are achievable for any number of nodes N that is sufficiently large.

Now we have the tools to prove our main theorem, restated below.

Theorem 3. Given a guaranteed throughput value r ∈ (0, 1/2] for which 1
2r
6∈ Z, there exists

an integer N0 such that, for all integers N ≥ N0, there exists an ORN design on N nodes

which guarantees throughput r and achieves maximum latency within O (L∗orn(r,N)).

Proof. Case 1: ε ≤ 1
2
· 1
16(h+1)(1+ 1

2h
)2

, and we use the VBS dummy node design. (Lemma 8)

Case 2: ε ∈
(

1
2
· 1
16(h+1)(1+ 1

2h
)2
, 1
)

, and we use the EBS dummy node design. (Lemma 6)
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CHAPTER 5

LOWER BOUNDS ON LATENCY

While the use of Valiant load balancing inflates path lengths by a factor of 2, which

reduces throughput by a factor of 2, it turns out that this factor-2 loss is unavoidable for ORN

designs. Before diving into the technical details necessary for showing that the reconfigurable

network designs of Chapters 3, 4, 6 and 7 are provably optimal, we find it instructive to

present a proof that no ORN design can sustain throughput greater than 1
2

+ o(1), even if

latency is allowed to be unbounded.

Consider the following: let σ denote a random permutation of the nodes, and consider a

demand function D in which every node a sends flow to destination σ(a) at rate r. We will

say a “direct link” is one whose endpoints are a and σ(a) for some node a, and a “spraying

link” is any other physical link. Define the inflated cost of a link to be 2 if it is a direct link

and 1 if it is a spraying link.

This ensures that the inflated cost of every routing path from a to σ(a) is at least 2,

regardless of whether it is a direct or indirect path. Therefore, when an ORN design is used

to route demand function D over a span of T timeslots, the total inflated cost of the links

used, weighted by their flow rates, is at least 2rNT . (In each of T timeslots, each of N nodes

sends flow at rate r on a routing path of inflated cost at least 2.) On the other hand, the

expected total inflated cost of all physical edges in the virtual topology is
(
1 + 1

N−1

)
NT . This

is because the virtual topology contains NT physical edges, and the expected inflated cost of

each e is 1 + 1
N−1 , accounting for the 1

N−1 probability that the random permutation σ leads

us to label e as a direct link and inflate its cost from 1 to 2.

If an ORN design sustains throughput r, then the flow rate on any physical edge in

the virtual topology when routing demand function D is at most 1, and consequently the

total inflated cost of all the physical edges used, weighted by their flow rates, is bounded
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above by the combined inflated cost of all the physical edges in the virtual topology. Hence

2rNT ≤
(
1 + 1

N−1

)
NT and r ≤ 1

2
+ 1

2(N−1) . This upper bound on throughput converges to

1/2 as N →∞.

5.1 ORN Maximum Latency

In this section we prove the lower-bound half of Theorem 1, restated below.

Theorem 1.1. Consider any constant r ∈ (0, 1
2
]. Let (h, ε) to be the unique solution in

N× (0, 1] to the equation 1
2r

= h+ 1− ε, and let L∗orn(r,N) be the function

L∗orn(r,N) = h
(
N1/(h+1) + (εN)1/h

)
.

Then for every N > 1 and every ORN design on N nodes that guarantees throughput r, the

maximum latency is at least Ω(L∗orn(r,N)).

As noted in Section 2.2, the general case of this lower bound reduces to the case d = 1,

and we will assume d = 1 throughout the remainder of this section.

Because the full proof is somewhat long, we begin by sketching some of the main ideas in

the proof, beginning with a much simpler argument leading to a lower bound of the form

Ω(1
r
N r) when 1/r is an integer. This simple lower bound applies not only to oblivious routing

schemes, but to any feasible flow f that solves the uniform multicommodity flow problem

given by the demand function D(t, a, b) = r
N−1 for all t ∈ [T ] and b 6= a. The lower bound

follows by combining a few key observations.

1. Define the cost of a path to be the number of physical edges it contains. Since every

source sends out r units of flow at all times, the flow f sends out rNT units of flow per

T -step period, in a network whose physical edges have only NT units of capacity per

T -step period. Consequently the average cost of flow paths in f must be at most 1
r
.
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2. For any source node (a, t) in the virtual topology, the number of distinct destination

nodes (b, t+ L) that can be reached via a path with maximum latency L and cost p is

bounded above by
(
L
p

)
.

3. If L ≤ 1
2er
N r, we have

(
L
1/r

)
≤ N/4 and

∑1/r
p=1

(
L
p

)
≤ N/2, so the majority of source-

destination pairs cannot be joined by a path with latency L and cost less than 1
r

+ 1.

In fact, even if we connect every source and destination with a minimum-cost path

(subject to latency bound L), one can show that the average cost of paths will exceed 1
r
.

4. Since a feasible flow must have average path cost at most 1
r
, we can conclude that a

feasible flow does not exist when L ≤ 1
2er
N r.

When 1/r is an integer, this lower bound of Lmax ≥ 1
2er
N r for feasible uniform multicom-

modity flows turns out to be tight up to a constant factor. However for oblivious routing

schemes, Theorem 1.1 shows that maximum latency is bounded below by a function in which

the exponent of N is roughly twice as large. Stated differently, for a given maximum latency

bound, the optimal throughput guarantee for oblivious routing is only half as large as the

throughput of an optimal uniform multicommodity flow.

The factor-two difference in throughput between oblivious routing and optimal uniformly

multicommodity flow solutions aligns with the intuition that oblivious routing schemes must

use indirect paths (as in Valiant load balancing) if they are to guarantee throughput r,

whereas uniform multicommodity flow solutions (in a well-designed virtual topology) can

afford to satisfy all demands using shortest-path routing. The proof of the lower bound for

oblivious routing needs to substantiate this intuition.

To do so, we formulate oblivious routing as a linear program and interpret the dual

variables as specifying a more refined way to measure the cost of paths. Rather than defining

the cost of a path to be its number of physical edges, the duality-based proof amounts to an

accounting system in which the cost of using an edge depends on the endpoints of the path
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in which the edge is being used. For a parameter θ which we will set to h + 1 (unless ε is

very small, in which case we’ll set θ = h+ 2), the dual accounting system assesses the cost

of an edge to be 1 if its distance from the source is less than θ, plus 1 if its distance from

the destination is less than θ. Thus, the cost of an edge is doubled when it is close to both

the source and the destination. The doubling has the effect of equalizing the costs of direct

and indirect paths: when the distance between a source and destination is at least θ, there is

no difference in cost between a shortest path and one that combines two semi-paths each

composed of θ physical edges.

Viewed in this way, it is intuitive that the proof manages to show that VLB routing schemes,

which construct routing paths by concatenating random semi-paths with the appropriate

number of physical edges, correspond to optimal solutions of the oblivious routing LP. The

difficulty in the proof lies in showing that the constructed dual solution is feasible; for this, we

make use of a version of the same counting argument sketched above, that bounds the number

of distinct destinations reachable from a given source under constraints on the maximum

latency and the maximum number of physical edges used.

5.1.1 Full Proof

Before presenting the proof of Theorem 1.1, we formalize the counting argument we reasoned

about in our proof sketch.

Lemma 9. (Counting Lemma) If in an ORN topology, some node a can reach k other

nodes in at most L timeslots using at most h physical hops per path for some integer h, then

k ≤ 2
(
L
h

)
, assuming h ≤ 1

3
L.

Proof. If node a can reach k other nodes in ≤ L timeslots using exactly h physical hops

per path, then k ≤
(
L
h

)
. Additionally, the function

(
L
h

)
grows at least exponentially in base
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2 — that is,
(
L
h

)
≥ 2
(
L
h−1

)
— up until h = 1

3
L. Therefore, the number of such k is at most∑h

i=1

(
L
i

)
≤ 2
(
L
h

)
.

Proof. (Of Theorem 1.1.) Consider the linear program below which maximizes throughput

given a maximum latency constraint, L, where we let PL(a, b, t) be the set of paths from

(a, t)→ (b, t+ L) with latency at most L.

LP

maximize r

subject to
∑

P∈PL(a,b,t)Ra,b,t(P ) = r ∀a, b ∈ [N ], t ∈ [T ]

∑
a∈[N ]

∑T−1
t=0

∑
P∈PL(a,σ(a),t):e∈P Ra,σ(a),t(P ) ≤ 1 ∀σ ∈ SN , e ∈ Ephys

Ra,b,t(P ) ≥ 0 ∀a, b ∈ [N ], t ∈ [T ], P ∈ PL(a, b, t)

The second set of constraints, in which the parameter σ ranges over the set SN of all

permutations of [N ], can be reformulated as the following set of nonlinear constraints in

which the maximum is again taken over all permutations σ:

max
σ

∑
a∈[N ]

T−1∑
t=0

∑
P∈PL(a,σ(a),t):e∈P

Ra,σ(a),t(P )

 ≤ 1 ∀e ∈ Ephys

Note that given an edge e, this maximization over permutations σ corresponds to maximizing

over perfect bipartite matchings with edge weights defined by wa,b,e =
∑T−1

t=0

∑
P∈PL(a,b,t):e∈P Ra,b,t(P ).

This prompts the following matching LP and its dual.
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Matching LP

maximize
∑

a,b ua,b,ewa,b,e

subject to
∑

b∈[N ] ua,b,e ≤ 1 ∀a ∈ [N ]

∑
a∈[N ] ua,b,e ≤ 1 ∀b ∈ [N ]

ua,b,e ≥ 0 ∀a, b ∈ [N ], e ∈ Ephys

Matching Dual

minimize
∑

a∈[N ] ξa,e +
∑

b∈[N ] ηb,e

subject to ξa,e + ηb,e ≥ wa,b,e ∀a, b ∈ [N ]

ξa,e ≥ 0 ∀a ∈ [N ], e ∈ Ephys

ηb,e ≥ 0 ∀b ∈ [N ], e ∈ Ephys

We then substitute finding a feasible matching dual solution into the original LP, replace

the expression wa,b,e with its definition
∑T−1

t=0

∑
P∈PL(a,b,t):e∈P Ra,b,t(P ), and take the dual

again.

LP

maximize r

subject to
∑

P∈PL(a,b,t)Ra,b,t(P ) = r ∀a, b ∈ [N ], t ∈ [T ]

ξa,e + ηb,e ≥
∑T−1

t=0

∑
P∈PL(a,b,t):e∈P Ra,b,t(P ) ∀a, b ∈ [N ], e ∈ Ephys

∑
a∈[N ] ξa,e +

∑
b∈[N ] ηb,e ≤ 1 ∀e ∈ Ephys

ξa,e ≥ 0 ∀a ∈ [N ], e ∈ Ephys

ηb,e ≥ 0 ∀b ∈ [N ], e ∈ Ephys

Ra,b,t(P ) ≥ 0 ∀a, b ∈ [N ], t ∈ [T ], P ∈ PL(a, b, t)
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Dual

minimize
∑

e ze

subject to
∑

a,b,t xa,b,t ≥ 1

ze ≥
∑

b ya,b,e ∀a ∈ [N ], e ∈ Ephys

ze ≥
∑

a ya,b,e ∀b ∈ [N ], e ∈ Ephys

∑
e∈P ya,b,e ≥ xa,b,t ∀a, b ∈ [N ], t ∈ [T ], P ∈ PL(a, b, t)

ya,b,e, ze ≥ 0 ∀a, b ∈ [N ], e ∈ Ephys

The variables ya,b,e can be interpreted as either edge costs we assign dependent on source-

destination pairs (a, b), or demand functions designed to overload a particular edge e. We

will use both interpretations, depending on if we are comparing ya,b,e variables to either xa,b,t

or ze variables respectively. According to the fourth dual constraint, the variables xa,b,t can

be interpreted as encoding the minimum cost of a path from (a, t) to (b, t + L) subject to

latency bound L. According to the second and third dual constraints, the variables ze can be

interpreted as bounding the throughput requested by the demand function D(t, a, b) = ya,b,e.

We will next define the cost inflation scheme we use to set our dual variables.

Cost inflation scheme For a given node a ∈ [N ] and cutoff θ ∈ Z>0, we will classify

edges e according to whether they are reachable within θ physical hops of a, counting edge e

as one of the hops. (In other words, one could start at node a and cross edge e using θ or

fewer physical hops.) We define this value m+
θ (e, a) as follows.

m+
θ (e, a) =


1 if e can be reached from a using at most θ physical hops (including e)

0 otherwise
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We define a similar value for edges which can reach node b.

m−θ (e, b) =


1 if b can be reached from e using at most θ physical hops (including e)

0 otherwise

To understand how these values are set, consider some path P from (a, t) → (b, t + L). If

we consider the m+
θ ,m

−
θ weights on the edges of P , then the first θ physical hop edges of P

have weight m+
θ (e, a) = 1 and the last θ physical hop edges of P have weight m−θ (e, b) = 1. It

may be the case that some edges have both m+
θ (e, a) = m−θ (e, b) = 1, if P uses fewer than 2θ

physical hops. And if P uses θ or fewer physical hops, then every physical hop edge along P

has weight m+
θ (e, a) = m−θ (e, b) = 1. All other weights may be 0 or 1 depending on whether

those edges are otherwise reachable from a or can otherwise reach b.

We start by setting ŷa,b,e = m+
θ (e, a)+m−θ (e, b). Also set x̂a,b,t = minP∈PL(a,b,t){

∑
e∈P ŷa,b,e}.

Note that by definition, x̂ and ŷ variables satisfy the last dual constraint. We will next find a

lower bound w ≤
∑

a,b,t x̂a,b,t and use that to normalize the x̂, ŷ variables to satisfy the first

dual constraint.

Note that
∑

e∈P ŷa,b,e ≥ min{2θ, 2|P ∩Ephys|}. Then we can bound the sum of x̂ variables

by

∑
a,b,t

x̂a,b,t ≥
∑
a,t

∑
b 6=a

min
P∈PL(a,b,t)

{2θ, 2|P ∩ Ephys|}

Note that x̂a,b,t < 2θ only when there exists some path from (a, t) to JbK which uses less

than θ physical edges. We can then use the Counting Lemma to produce an upper bound on

the number of b 6= a which have such paths: this is at most 2
(
L
θ−1

)
.

So, assuming that 2
(
L
θ−1

)
≤ N and that θ − 1 ≤ L/3, we have
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∑
a,t

∑
b6=a

x̂a,b,t ≥ NT

(
2θ

(
N − 2

(
L

θ − 1

))
+

(
L

θ − 1

))

Set

w = NT

(
2θ

(
N − 2

(
L

θ − 1

))
+

(
L

θ − 1

))
,

and then set ya,b,e = 1
w
ŷa,b,e and xa,b,t = 1

w
x̂a,b,t.

Next, we set ze = maxa,b{
∑

a ya,b,e,
∑

b ya,b,e}. By construction, the values of xa,b,t, ya,b,e, ze

that we have defined satisfy the dual constraints. Then to bound throughput from above, we

upper bound the sums
∑

a ya,b,e and
∑

b ya,b,e, thus upper bounding the sum of ze’s.

∑
a

ya,b,e =
1

w

∑
a

(
m+
θ (e, a) +m−θ (e, b)

)
≤ 1

w

(∑
a

m+
θ (e, a) +N − 1

)
≤ 1

w

(
2

(
L

θ − 1

)
+N − 1

)
where the last step is an application of the Counting Lemma. Similarly,

∑
b

ya,b,e =
1

w

∑
b

(
m+
θ (e, a) +m−θ (e, b)

)
≤ 1

w

(
N − 1 +

∑
b

m−θ (e, b)

)
≤ 1

w

(
N − 1 + 2

(
L

θ − 1

))
Recalling that ze = maxa,b{

∑
a ya,b,e,

∑
b ya,b,e}, we deduce that

ze ≤
1

w

(
N − 1 + 2

(
L

θ − 1

))
.

Using this upper bound on ze, we find that the optimal value of the dual objective — hence

also the optimal value of the primal, i.e. the maximum throughput of oblivious routing
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schemes — is bounded by

r ≤
∑
e

ze ≤
NT

w

(
N − 1 + 2

(
L

θ − 1

))

=
N − 1 + 2

(
L
θ−1

)
2θN − 4θ

(
L
θ−1

)
+ 2
(
L
θ−1

)
≤
N − 1 + 2

(
L
θ−1

)
2θN − 4θ

(
L
θ−1

)
=
N − 1 + 2(L!)

(θ−1)!(L−θ+1)!

2θN − 4θ L!
(θ−1)!(L−θ+1)!

=
(N − 1)(θ − 1)!(L− θ + 1)! + 2(L!)

2θ(N(θ − 1)!(L− θ + 1)!− 2(L!))

=
1

2θ
+

4(L!)

2θ(L− θ + 1)!
(
N(θ − 1)!− 2 L!

(L−θ+1)!

)
≤ 1

2θ
+

4Lθ−1

2θ(N(θ − 1)!− 2Lθ−1)

using the fact that a!
(a−b)! ≤ ab. At this point, we can rearrange the inequality to isolate L.

r − 1

2θ
≤ 4Lθ−1

2θ(N(θ − 1)!− 2Lθ−1)(
r − 1

2θ

)
(2θN(θ − 1)!)−

(
r − 1

2θ

)
4θLθ−1 ≤ 4Lθ−1(

r − 1

2θ

)
2θN(θ − 1)! ≤ Lθ−1

(
4 +

(
r − 1

2θ

)
4θ

)
(r − 1

2θ
)2θN(θ − 1)!

4 + (r − 1
2θ

)4θ
≤ Lθ−1

(
(r − 1

2θ
)2θN(θ − 1)!

4 + (r − 1
2θ

)4θ

) 1
θ−1

≤ L

Now that we have a closed form, we simplify. We use Stirling’s approximation, in the form

(k!)
1
k ≥ k

e

√
2πk

1
k .
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L ≥
(

(r − 1
2θ

)2θN(θ − 1)!

4 + (r − 1
2θ

)4θ

) 1
θ−1

= N
1
θ−1 (θ − 1)!

1
θ−1

(
(r − 1

2θ
)2θ

4 + (r − 1
2θ

)4θ

) 1
θ−1

≥ θ − 1

e
N

1
θ−1

(
(r − 1

2θ
)2θ
√

2π(θ − 1)

4 + (r − 1
2θ

)4θ

) 1
θ−1

≥ θ − 1

e
N

1
θ−1

(r − 1
2θ

)θ
√

π(θ−1)
2

θr + 1
2


1
θ−1

To set the parameter θ, first note that the above bound is positive when r > 1
2θ

. Additionally,

we would like to set θ as large as possible, and θ must be an integer value (otherwise the

Counting Lemma doesn’t make sense). Taking this into account, we set θ =
⌊

1
2r

⌋
+ 1, the

nearest integer for which (r − 1
2θ

) produces a positive value.

To simplify our lower bound further, let h =
⌊

1
2r

⌋
and ε = h + 1 − 1

2r
. These can be

interpreted in the following way: h represents the largest number of physical hops we take

per path (approximately), and ε is directly related to how many pairs take paths using h

physical hops instead of paths using fewer than h physical hops. Note that ε ∈ (0, 1]. This

gives the restated bound below.

L ≥ h

e
N1/h

(r − 1
2(h+1)

)(h+ 1)
√

πh
2

(h+ 1)r + 1
2

1/h

=
h

e
N1/h


(

ε
2(h+1)(h+1−ε)

)
(h+ 1)

√
πh
2

1 + ε
2(h+1−ε)


1/h

=
h

e
N1/h

 ε
√

πh
2

2(h+ 1− ε) + ε)

1/h

≥ h

e
(εN)1/h


√

πh
2

4h

1/h

(5.1)

=
h

e
(εN)1/h · Ω(1) = Ω

(
h(εN)1/h

)
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As ε→ 0, this bound goes toward 0, making it meaningless for extremely small values of

ε. However, for such values of ε, we simply set θ = h+ 2 instead, which gives the following

Lmax ≥ Ω
(
(h+ 1)N1/(h+1)

)
To combine the two ways in which we set θ, we take the average of the two bounds. This

gives the bound from our theorem statement,

Lmax ≥ Ω
(
h
[
(εN)1/h +N1/(h+1)

])
= Ω (L∗orn(r,N)) .

5.2 ORN Maximum Latency With High Probability

In this section we prove the following theorem concerning ORN designs which achieve their

throughput value only with high probability.

Theorem 5. Given any fixed throughput value r ∈ (0, 1
2
], let g = g(r) = b1

r
− 1c and

ε = ε(r) = g + 1− (1
r
− 1), and let

L∗low(r,N) = g
(
(εN)1/g +N1/(g+1)

)
Then any fixed ORN design R of size N which achieves throughput r with high probability

must suffer at least Ω(L∗low(r,N)) maximum latency.

Proof. We will start by upper bounding throughput for a given maximum latency. We begin

with a set of N ! linear programs, one for each possible permutation σ on the node set, to

solve the following problem: given maximum latency L and some reconfigurable network
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schedule, LPσ finds a set of routing paths to route r flow between each a, σ(a) pair, and

maximizes the value r for which this is possible.

Primal LPσ

maximize r

subject to
∑

P∈PL(a,σ(a),t) Rσ(a, t, P ) = r ∀a ∈ [N ], t ∈ [T ]

∑
a,t

∑
P∈PL(a,σ(a),t):e∈P Rσ(a, t, P ) ≤ 1 ∀e ∈ Ephys

Rσ(a, t, P ) ≥ 0 ∀a ∈ [N ], t ∈ [T ], P ∈ PL(a, σ(a), t)

We then take the dual program of each LPσ to find Dualσ.

Dualσ

minimize
∑

e βσe

subject to αatσ ≤
∑

e∈P βσe ∀a ∈ [N ], t ∈ [T ], P ∈ PL(a, σ(a), t)

∑
at αatσ ≥ 1

βσe ≥ 0 ∀e ∈ Ephys

For each Dualσ, we will define a dual solution. Then, we will analyze an upper bound on

the objective value of Dualσ, with high probability over the random sampling of σ.

We will also reframe Dualσ in the following way, which will be easier to work with. Note

that (
∑
βσe)

/
(
∑
αatσ) is still an upper bound on throughput.
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minimize (
∑

e βσe)
/

(
∑

at αatσ)

subject to αatσ ≤
∑

e∈P βσe ∀a, t, P

βσe ≥ 0

To understand how we construct and analyze dual solutions for Dualσ, we’ll start by

showing that oblivious designs cannot achieve throughput better than 1/2, even with high

probability. Define

βσe =


2 if e connects some a→ σ(a) pair

1 otherwise.

and let αatσ = minP∈PL(a,σ(a),t){
∑

e∈P βσe}. By construction, αatσ ≥ 2 for all a, t. So∑
a,t αatσ ≥ 2NT , where T is the period of the schedule.

Additionally, in expectation, E[βσe] = 1 + 1
N

for all e. So, E [
∑

e βσe] = (1 + 1
N

)NT

Then E[(
∑

e βσe)
/

(
∑

at αatσ)] ≤ 1
2

(
1 + 1

N

)
, which converges to 1

2
as N →∞.

Now, suppose that throughput r is achievable with high probability. That would mean

that routing the demands rDσ gives a feasible flow with probability at least
(
1− 1

N

)
over a

uniformly random choice σ. If routing demands rDσ is feasible for a fixed permutation σ,

then it must be the case that the objective value of LPσ is at least r.

And since the objective value of LPσ is always non-negative, then this implies that over a

uniformly random permutation σ, the expected objective value of LPσ is at least r · (1− 1/N).

The inequality r · (1− 1/N) ≤ 1
2
(1 + 1

N
) implies that r must be at most 1

2
+ 2

N−1 .

Dualσ solutions to bound general throughput. Now we’ll show good dual solutions
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for general r. Given parameter θ ∈ Z≥1, set

βτe =


θ + 1 if e on a path of θ physical edges between some u→ σ(u) pair

1 otherwise.

By construction, αatσ ≥ θ+ 1, so
∑

a,t αatσ = NT (θ+ 1), where T is the period. Additionally,

E[βσe] = 1 + θPr(e is on a path of ≤ θ physical edges with σ-matched endpoints)

To bound the above value, we apply the Counting Lemma from Section 5.1.1, restated below.

Lemma 9. (Counting Lemma) If in an ORN topology, some node a can reach k other

nodes in at most L timesteps using at most h physical hops per path for some integer h, then

k ≤ 2
(
L
h

)
, assuming h ≤ 1

3
L.

Applying the Counting Lemma, the probability that edge e is on a path of no more than

θ physical edges with σ-matched endpoints is at most

1

N

θ−1∑
m=0

2

(
L

m

)
2

(
L

θ − 1−m

)
≤ 4

N

(
2L

θ − 1

)
assuming θ − 1 ≤ 1

3
L. Then

E[βσe] ≤ 1 +
4θ

N

(
2L

θ − 1

)
=⇒ E

[∑
e

βσe

]
≤ NT

(
1 +

4θ

N

(
2L

θ − 1

))

Meaning we can bound the expected objective value of Dualσ throughput achievable under

random permutation traffic.

E[obj. value of Dualσ] ≤ E

[∑
e

βσe

]/
(NT (θ + 1))

≤
(

1 +
4θ

N

(
2L

θ − 1

))/
(θ + 1)
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As before, we use this expectation to find an upper bound on the achievable throughput

rate with high probability

r

(
1− 1

Nd

)
≤
(

1 +
4θ

N

(
2L

θ − 1

))/
(θ + 1)

We then simplify and isolate L to one side of the inequality, to find the following

lower bound on maximum latency. The inequality a!
(a−b)! ≤ ab and Stirling’s approximation

(k!)
1
k ≥ k

e

√
2πk

1
k prove useful during this simplification process.

L ≥ θ − 1

2e
N

1
θ−1

((
Nd − 1

Nd
r − 1

θ + 1

) √
2π(θ − 1)

4θ

) 1
θ−1

To ensure that this bound stays above 0, we approximately need (r(θ + 1) − 1) > 0,

meaning θ must be greater than 1
r
− 1. Setting θ as the smallest integer for which this holds,

we find θ = b1
r
c. Let g = θ− 1 and ε = g+ 1− (1

r
− 1). Then we substitute r = 1

g+2−ε to find

L ≥ g

2e
(εN)1/g

( √
2πg

4(h+ 1)(g + 2− ε)

)1/g

=⇒ L ≥ Ω
(
g
(
(εN)1/g +N1/(g+1)

))
.

5.2.1 SORN Maximum Latency

Corollary 1. Given any fixed throughput value r ∈ (0, 1
2
], let g = g(r) = b1

r
− 1c and

ε = ε(r) = g + 1− (1
r
− 1).

1. Then any fixed SORN design which guarantees throughput r (with respect to fixed

demands), must suffer maximum latency at least Ω(L∗low(r,N)).

2. Additionally, any distribution over SORN designs S each of size N , which guarantees

throughput r (with respect to fixed demands) over the random sampling R ∼ R must

suffer at least Ω(L∗low(r,N)) maximum latency.

68



Before we begin the proof, note that this lower bound does not make any claims about

what maximum latencies are achievable with high probability for SORNs which guarantee

throughput r. In Section 5.4, we give a similar lower bound on the average (or, expected)

latency of any SORN design which guarantees throughput r. This lower bound has an

additional multiplicative dependence on ε. Thus, the lower bound on maximum latency and

the lower bound on expected latency match to within a constant factor for most values of r:

when 1
r
6∈
⋃∞
m=2

(
m− 1

K
,m
)
, for any large constant K.

Proof. The linear program appearing in Section 5.2, Theorem 5, when considered as whole

instead of as a family of N ! different programs, sets up this SORN problem exactly. It

asks: given a particular reconfigurable network schedule, for each possible permutation σ,

maximize the guaranteed throughput rate while routing flow between σ-matched pairs. Since

the expectation Eσ [
∑

e βσe], is upper bound by NT
(
1 + 4θ

N

(
2L
θ−1

))
, then there exists at least

one σ for which the bound holds. The rest of the proof follows similarly to the proof of

Theorem 5, only without the factor
(
1− 1

Nd

)
.

Note that every SORN design S within the support of S must itself guarantee through-

put r (with probability 1). Thus, each design S must suffer maximum latency at least

Ω(L∗low(r,N)), and the whole distribution must also suffer maximum latency at least Ω(L∗low(r,N)).

5.3 ORN Average Latency

We devote this section to proving Theorem 14 as stated in Section 7.4, and also stated below.

Theorem 14. Consider any constant r ∈ (0, 1
2
]. Let h = h(r) =

⌊
1
2r

⌋
and εo = εo(r) =
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h+ 1− 1
2r

, and let Lobl(r,N) be the function

Lobl(r,N) = εo(εoN)1/h +N1/(h+1).

Then for every N > 1 and every distribution of ORN designs R on N nodes that guarantees

throughput r, the expected average latency of R ∼ R is at least Ω(Lobl(r,N)).

Proof. We begin by showing that the average latency of any fixed ORN design which

guarantees throughput r with respect to time-stationary demands must satisfy average

latency at least Ω(Lorn(r,N)). This will be enough to proof Theorem 14. Note that every

ORN design R within the support of R must guarantee throughput r (with probability 1).

Thus, each design R must satisfy average latency at least Ω(Lorn(r,N)). Use linearity of

expectation to then show that the expected average latency of R ∼ R must be at least

Ω(Lorn(r,N)).

Fix any ORN connection schedule π. We begin by stating the following linear program

which, given π and average latency bound L, attempts to find a routing scheme which

maximizes throughput, while keeping the average latency among all routing paths used,

weighted by the fraction of flow traveling along each path, below the average latency bound

L.

The proof will continue in the following way: we will first transform our LP into another

LP which has fewer constraints. Then, we will take the Dual, to turn it into a minimization

problem. We will give a dual solution and upper bound its objective value, thus upper

bounding guaranteed throughput subject to an average latency constraint. Finally, we

will rewrite this inequality into a lower bound on average latency, subject to a guaranteed

throughput.
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Primal LP

maximize r

subject to
∑

P∈P(a,b,t) Ra,b,t(P ) = r ∀a, b ∈ [N ], t ∈ [T ]

∑
a,t

∑
P∈P(a,σ(a),t):e∈P Ra,σ(a),t(P ) ≤ 1 ∀e ∈ Ephys, σ ∈ SN

∑
a,b,t

∑
P∈P(a,b,t) Ra,b,t · lat(P ) ≤ rN2T · L

Ra,b,t(P ), r ≥ 0 ∀a, b ∈ [N ], t ∈ [T ], P ∈ P(a, b, t)

Where we interpret lat(P ) as the latency of the path P , or the combined number of

virtual and physical edges1. As in Section 5.1, we replace the factorial number of constraints

ranging over choices of σ with a polynomial number of constraints which range over choices

of a, b ∈ [N ]. We do this by interpreting these constraints for a fixed edge e as solving a

maximum bipartite matching problem from [N ] to [N ]. See Section 5.1.1 for a step-by-step

explanation.

Primal LP

maximize r

subject to
∑

P∈P(a,b,t) Ra,b,t(P ) = r ∀a, b ∈ [N ], t ∈ [T ]

∑
a ξa,e +

∑
b ηb,e ≤ 1 ∀e ∈ Ephys

∑
t

∑
P∈P(a,σ(a),t):e∈P Ra,σ(a),t(P ) ≤ ξa,e + ηb,e ∀a, b ∈ [N ], e ∈ Ephys

∑
a,b,t

∑
P∈P(a,b,t) Ra,b,t · lat(P ) ≤ r ·N2TL

Ra,b,t(P ), ξa,e, ηb,e, r ≥ 0 ∀a, b ∈ [N ], t ∈ [T ], P ∈ P(a, b, t), e ∈ Ephys

1We use lat(P ) here to denote the latency of path P , instead of L(P ) as defined in Chapter 2, to prevent
confusion between the latency of a path and the average latency bound L.
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Dual

minimize
∑

e ze

subject to
∑

a,b,t xa,b,t − γ ·N2TL ≥ 1

ze ≥
∑

b ya,b,e ∀a ∈ [N ], e ∈ Ephys

ze ≥
∑

a ya,b,e ∀b ∈ [N ], e ∈ Ephys

∑
e∈P ya,b,e + γ · lat(P ) ≥ xa,b,t ∀a, b ∈ [N ], t ∈ [T ], P ∈ P(a, b, t)

ya,b,e, ze, γ ≥ 0 ∀a, b ∈ [N ], e ∈ Ephys

We will first create a dual solution, aiming to fulfill all constraints except the first. We

will then normalize the variables so that
∑

a,b,t xa,b,t − γ ·N2TL is as close to 1 as possible.

We define this value m+
θ (e, a) as follows, parameterized by some parameter k (to be

defined later).

m+
θ (e, a) =


1 if e can be reached from a using at most θ physical hops

(including e) in ≤ kL timesteps

0 otherwise

We define a similar value for edges which can reach node b.

m−θ (e, b) =


1 if b can be reached from e using at most θ physical hops

(including e) in ≤ kL timesteps

0 otherwise

Set ŷa,b,e = m+
θ (e, a)+m−θ (e, b). Also set γ̂ = 2θ

kL
, and set x̂a,b,t = minP∈P(a,b,t){

∑
e∈P ŷa,b,e+

γ̂ · lat(P )}. Note that by definition, γ̂, x̂ and ŷ variables satisfy the last set of dual constraints.
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Consider some path P which connects a to b starting at timestep t. If path P has latency

greater than kL, then ∑
e∈P

ŷa,b,e + γ̂ · lat(P ) ≥ γ̂kL = 2θ.

If on the other hand, path P has latency no more than kL but uses at least θ physical

hops, then ∑
e∈P

ŷa,b,e + γ̂ · lat(P ) ≥
∑
e∈P

ŷa,b,e ≥ 2θ.

Finally, if path P has latency no more than kL and uses fewer than θ physical hops, then

∑
e∈P

ŷa,b,e + γ̂ · lat(P ) ≥
∑
e∈P

ŷa,b,e = 2|P ∩ Ephys|.

We use the following lemma, restated from Section 5.1.1, to bound
∑

a,b,t x̂abt.

Lemma 9: (Counting Lemma) If in an ORN topology, some node a can reach k other

nodes in at most L timesteps using at most h physical hops per path for some integer h, then

k ≤ 2
(
L
h

)
, assuming h ≤ 1

3
L.

∑
a,b,t

x̂a,b,t ≥
∑
a,t

∑
b 6=a

min{2θ, min
P∈PkL(a,b,t)

{2|P ∩ Ephys|}}

≥ NT

(
2θ

(
N − 2

(
kL

θ − 1

))
+ 2

(
kL

θ − 1

))
=⇒

∑
a,b,t

x̂a,b,t − γ̂N2TL ≥ NT

(
2θ

(
N − 2

(
kL

θ − 1

))
+ 2

(
kL

θ − 1

))
− 2θ

k
N2T

= NT

((
2θ − 2θ

k

)
N − 4θ

(
kL

θ − 1

)
+ 4

(
kL

θ − 1

))
= w

Set this equal to w, our normalization term for each of the dual variables. Now set γ = 1
w
γ̂,

ya,b,e = 1
w
ŷa,b,e and xa,b,t = 1

w
x̂a,b,t.

Finally, set ze = maxa,b{
∑

a ya,b,e,
∑

b ya,b,e}. Note that by construction, our dual solution

satisfies all constraints. To bounds throughput from above, we upper bound the sums
∑

a ya,b,e
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and
∑

b ya,b,e, allowing us to upper bound the total sum of ze variables.

∑
a

ya,b,e =
1

w

∑
a

(
m+
θ (e, a) +m−θ (e, b)

)
≤ 1

w

(∑
a

m+
θ (e, a) +N − 1

)

≤ 1

w

(
2

(
L

θ − 1

)
+N − 1

)

where the last step is an application of the Counting Lemma. Similarly,

∑
b

ya,b,e =
1

w

∑
b

(
m+
θ (e, a) +m−θ (e, b)

)
≤ 1

w

(
N − 1 +

∑
b

m−θ (e, b)

)

≤ 1

w

(
N − 1 + 2

(
L

θ − 1

))

Recalling that ze = maxa,b{
∑

a ya,b,e,
∑

b ya,b,e}, and that the dual objective aims to

minimize
∑

e ze, we deduce that

r ≤
∑
e

ze ≤
NT

w

(
N − 1 + 2

(
kL

θ − 1

))

=
N − 1 + 2

(
L
θ−1

)(
2θ − 2θ

k

)
N − 4θ

(
kL
θ−1

)
+ 4
(
kL
θ−1

)
≤

N − 1 + 2 (kL)!
(θ−1)!(kL−θ+1)!

2θ
((

k−1
k

)
N − 2 (kL)!

(θ−1)!(kL−θ+1)!

)
=

k

2θ(k − 1)
+

4(kL)!

2θ(kL− θ + 1)!
((

k−1
k

)
N(θ − 1)!− 2 (kL)!

(kL−θ+1)!

)
≤ k

2θ(k − 1)
+

4(kL)θ−1

2θ
((

k−1
k

)
N(θ − 1)!− 2(kL)θ−1

)
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using the fact that a!
(a−b)! ≤ ab. At this point, we rearrange the inequality to isolate L.

kL ≥


(
r − k

2θ(k−1)

)
2θ k−1

k
N(θ − 1)!

4
(

1 + θ
(
r − k

2θ(k−1)

))


1
θ−1

L ≥ θ − 1

ke
N

1
θ−1


(
r − k

2θ(k−1)

)
2θ k−1

k

√
2π(θ − 1)

4
(

1 + θ
(
r − k

2θ(k−1)

))


1
θ−1

using Stirling’s approximation, in the form (k!)
1
k ≥ k

e

√
2πk

1
k .

Recall that h =
⌊

1
2r

⌋
and εo = h+ 1− 1

2r
, as in the statement of the theorem above. We

also set the parameter θ = h+ 1. Note that our lower bound will always be positive when(
r − k

2θ(k−1)

)
> 0, which occurs as long as εo >

h+1
k

. This tells us how to set the constant k:

we may set k = 2h+1
εo

. Since εo ∈ (0, 1], this is always well-defined. Substitute h, εo into the

lower bound and simplify.

L ≥ h

ke
N

1
h


(
r − k

2(h+1)(k−1)

)
2(h+ 1)k−1

k

√
πh/2

1 + (h+ 1)
(
r − k

2(h+1)(k−1)

)


1
h

=
h

ke
N

1
h

√hπ

2
·

(
1

2(h+1−εo) −
k

2(h+1)(k−1)

)
(h+ 1)k−1

k

1 + (h+ 1)
(

1
2(h+1−εo) −

k
2(h+1)(k−1)

)


1
h

=
h

ke
N

1
h

(√
hπ

2
· k − 1

k
· kεo − (h+ 1)

3(h+ 1)(k − 1)− 2εo(k − 1)

) 1
h

=
h

ke
(εoN)

1
h

(√
hπ

2
· k − 1

k
·

k − h+1
εo

3(h+ 1)(k − 1)− 2εo(k − 1)

) 1
h

≥ h

ke
(εoN)

1
h

(√
hπ

2
· 1

3(h+ 1)− 2εo

) 1
h

≥ Ω

(
h

k
(εoN)

1
h

)
= Ω

(
εo(εoN)

1
h

)

because 1
k

= εo
2(h+1)

. Finally, we realize that any lower bound on average latency subject

to a guaranteed throughput constraint r′ < r is also a lower bound on average latency subject
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to guaranteed throughput r. Let r′ = 1
2(h+1)

. Then r′ < r. Additionally,

Ω
(
εo(r

′)(εo(r
′)N)

1
h(r′)

)
= Ω

(
N

1
h+1

)
.

Therefore, combining these two lower bounds, we find that average latency of an ORN

design which guarantees throughput r must be at least

Ω
(
εo(εoN)

1
h +N

1
h+1

)
= Ω (Lorn(r,N)) .

5.4 SORN Average Latency

Theorem 6. Consider any constant r ∈ (0, 1
2
]. Let g = g(r) =

⌊
1
r
− 1
⌋

and ε = ε(r) =

g + 1− (1
r
− 1), and let Lso(r,N) be the function

Lso(r,N) = ε(εN)1/g +N1/(g+1).

Then for every N > 1 and every ORN design on N nodes that achieves throughput r with

high probability, the average latency suffered by routing paths must be at least Ω(Lso(r,N)).

Proof. We start by upper bounding throughput for a given average latency bound. We begin

with a set of N ! linear programs, one for each possible permutation σ on the node set, to

solve the following problem: given an average latency bound L and some reconfigurable

network schedule, LPσ finds a set of routing paths to route r flow between each a, σ(a) pair,

and maximizes the value r for which this is possible.
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Primal LP

maximize r

subject to
∑

P∈P(a,σ(a),t) Sσ(a, t, P ) = r ∀a ∈ [N ], t ∈ [T ], σ ∈ SN

∑
a,t

∑
P∈P(a,σ(a),t):e∈P Sσ(a, t, P ) ≤ 1 ∀e ∈ Ephys, σ ∈ SN

∑
a,t

∑
P∈P(a,σ(a),t):e∈P Sσ(a, t, P ) · lat(P ) ≤ r ·NTLN !

Sσ(a, t, P ) ≥ 0 ∀a ∈ [N ], t ∈ [T ], σ ∈ SN , P ∈ P(a, σ(a), t)

We then take the dual program of each LP to find the Dual program.

Dualσ

minimize
∑

e,σ βσe

subject to
∑

a,t,σ αatσ − γNTLN ! ≥ 1

αatσ ≤
∑

e∈P βσe + γ · lat(P ) ∀a ∈ [N ], t ∈ [T ], σ ∈ SN , P ∈ P(a, σ(a), t)

γ, βσe ≥ 0 ∀e ∈ Ephys

For each permutation σ, we will define its associated Dual variables. Then, we will analyze

an upper bound on the objective value of the entire Dual program.

We will also reframe the Dual program in the following way, which will be easier to work

with. Note that (
∑
βσe)

/
(
∑
αatσ − γNTLN !) is still an upper bound on throughput.
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minimize
(∑

e,σ βσe

)/(∑
a,t,σ αatσ − γNTLN !

)
subject to αatσ ≤

∑
e∈P βσe + γ · lat(P ) ∀a, t, σ, P

γ, βσe ≥ 0

Given parameter θ ∈ Z≥1, set

βσe =


θ + 1 if e on a path of ≤ θ physical edges and ≤ kL latency

between some u→ σ(u) pair

1 otherwise.

And set γ = θ+1
kL

. Then for any path P ,
∑

e∈P βσe + γ · lat(P ) ≥ θ + 1. Therefore, we can

always assign αatσ = θ + 1, giving us∑
a,t,σ

αatσ − γNTLN ! = (θ + 1)NTN !

(
1− 1

k

)

Finally, we upper bound Eσ[
∑

e βσe] to achieve an upper bound on
∑

e,σ βσe. We do this

by upper bounding the expected value of the individual terms βσe.

Eσ[βσe] = 1 + θPr[e is on a path of ≤ θ phys edges and ≤ kL lat. with σ-matched endpoints]

Applying the Counting Lemma (thus assuming θ − 1 ≤ 1
3
L), the above probability is at

most

1

N

θ−1∑
m=0

2

(
kL

m

)
2

(
kL

θ − 1−m

)
≤ 4

N

(
2kL

θ − 1

)

This is a sum over the number of physical hops m taken before edge e. For each value m,

we multiply the number of nodes a which can reach edge e using m physical hops in latency
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no more than kL by 1
N

times the number of nodes b reachable from e using the remaining

(θ − 1−m) physical hops in latency no more than kL. Then

Eσ[βσe] ≤ 1 +
4θ

N

(
2kL

θ − 1

)
=⇒ Eσ

[∑
e

βσe

]
≤ NT

(
1 +

4θ

N

(
2kL

θ − 1

))

This means we can bound the expected objective value of Dualσ throughput achievable

under random permutation traffic.

E[objective value of Dualσ] ≤ Eσ

[∑
e

βσe

]/(
NT (θ + 1)

(
k − 1

k

))
≤ k

(
1 +

4θ

N

(
2kL

θ − 1

))/
(θ + 1) (k − 1)

Therefore, the guaranteed throughput rate of any SORN design must be

r ≤ k

(
1 +

4θ

N

(
2kL

θ − 1

))/
(θ + 1) (k − 1)

We then simplify and isolate L to one side of the inequality, to find the following

lower bound on maximum latency. The inequality a!
(a−b)! ≤ ab and Stirling’s approximation

(a!)
1
a ≥ a

e

√
2πa

1
a prove useful during this simplification process.

L ≥ θ − 1

2ke
N

1
θ−1

(√
2π(θ − 1)

r(θ+1)(k−1)
k

− 1

4θ

) 1
θ−1

To ensure the bound is positive, we need r(θ+1)(k−1)
k

− 1 > 0, meaning that we need for

θ > k
(k−1)r − 1, or approximately θ > 1

r
− 1. Setting θ as the smallest integer for which this

holds, we find θ =
⌊
1
r

⌋
. Recall that g = g(r) =

⌊
1
r

⌋
− 1, therefore θ = g + 1. Additionally

recall that ε = ε(r) = g + 1− (1
r
− 1). We substitute r = 1

g+2−ε and set k = 2g+2
ε

. Thus, the

factor 1
k

becomes ε
2(g+2)

, allowing the following lower bound on average latency to hold.
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L ≥ g

2ke
(εN)1/g

(√
πg

2
·

k − g+2
ε

k(g + 2− ε)(g + 1)

)1/g

=⇒ L ≥ Ω
(
ε(εN)1/g

)
.

Finally, we realize that any lower bound on average latency subject to a guaranteed

throughput constraint r′ < r is also a lower bound on average latency subject to guaranteed

throughput r. Let r′ = 1
g+2

. Then r′ < r. Additionally,

Ω
(
ε(r′)(ε(r′)N)

1
g(r′)

)
= Ω

(
N

1
g+1

)
.

Therefore, combining these two lower bounds, we find that average latency of an SORN

design which guarantees throughput r must be at least

Ω
(
ε(εN)

1
g +N

1
g+1

)
= Ω (Lso(r,N)) .
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CHAPTER 6

ORN DESIGNS WITH HIGH PROBABILITY

In this chapter, we show that the ability to randomize the network topology in reconfigurable

networks allows oblivious routing schemes that improve upon VLB. We obtain reconfigurable

network designs that improve upon the maximum latency achievable for a given throughput

value by nearly the square root, when the network is allowed a small probability of violating

the throughput guarantee.

This chapter is dedicated to proving the following theorem.

Theorem 7. Given any fixed throughput value r ∈ (0, 1
2
], let g = g(r) = b1

r
− 1c and

ε = ε(r) = g + 1− (1
r
− 1), and let

L∗upp(r,N) = gN1/g (6.1)

L∗low(r,N) = g
(
(εN)1/g +N1/(g+1)

)
(6.2)

Assuming ε 6= 1:

1. for infinitely many network sizes N , there exists a single, fixed ORN design that attains

maximum latency Õ(L∗upp(r,N)), and achieves throughput r with high probability over

the uniform distribution on permutation demands;

2. for infinitely many network sizes N , there exists a family of distributions over ORN

designs which attains maximum latency Õ(L∗upp(r,N)), and achieves throughput r with

high probability;

3. furthermore, any fixed ORN design R of size N which achieves throughput r with high

probability over time-stationary demands must suffer at least Ω(L∗low(r,N)) maximum

latency.
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The upper and lower bounds on lines (6.1)-(6.2) match to within a constant factor for

most values of r: when 1
r
6∈
⋃∞
m=2

(
m− 2

2m
,m
]

then ε ≥ 2−g, so L∗low ≥ 1
2
L∗upp. The latency

of our reconfigurable network designs is L∗upp · Õ(logN), hence the upper and lower bounds

in Theorem 7 agree within a Õ(logN) factor for most values of r. See Figure 6.1 for a

visualization of these bounds. Additionally, like in Chapter 4, we condition against ε = 1.

This is due to requiring a strictly positive slack factor between the throughput r and 1
g+1

.

Figure 6.1: Throughput versus log-scale maximum latency tradeoff curves Õ(L∗upp) and L∗low,
when compared against L∗orn, the optimal tradeoff curve for guaranteed throughput from
Chapters 3 and 4 and Section 5.1, on an ORN containing 1030 nodes.

Note that Theorem 7.3, the lower bound, is just a restatement of Theorem 5, the proof of

which can be found in Chapter 5, Section 5.2.

We will begin by proving Theorem 7.1. That is, we will construct a single ORN design

R0 which is parameterized by N , g, and C, where C is a parameter which we set during

our analysis to a suitable function of N and r designed to achieve the appropriate tradeoffs

between throughput and latency, and we will show that this design satisfies Theorem 7.1.

We will then analyze RN (g, C), a distribution over all ORN designs Rτ which are equivalent

to R0 up to re-labeling of nodes, and show that it satisfies Theorem 7.2.

82



6.1 Connection Schedule

The connection schedule of R0, like the Vandermonde Basis Scheme from Section 3.2, is based

on round-robin phases (cf. Definition 13) defined by Vandermonde vectors. We interpret the

set of nodes as elements of the vector space Fgp over the prime field Fp, where N = pg. Each

node a ∈ [N ] can then be interpreted as a unique g-tuple (a1, a2, . . . , ag) ∈ Fgp.

During this connection schedule, each node will participate in a series of round robins, each

defined by a single Vandermonde vector of the form v(x) = (1, x, x2, . . . , xg−1). The period

length of the connection schedule is T = C(g + 1)(p− 1), and one full period of the schedule

consists of C(g + 1) consecutive round robins called Vandermonde phases or simply phases,

each of length (p− 1) timesteps. The C(g+ 1) phases constituting one period of the schedule

are defined by distinct Vandermonde vectors of the form v(x) = (1, x, . . . , xg−1). No property

of the Vandermonde vectors other than distinctness is required. Since Vandermonde vectors

are parameterized by elements x ∈ Fp, we require p ≥ C(g + 1) to ensure that sufficiently

many distinct Vandermonde vectors exist. The set of Vandermonde phases in one period

of the schedule will be grouped into (g + 1) non-overlapping phase blocks, each phase block

consisting of C phases.

More formally, we identify each congruence class k (mod T ) with a phase number x and

a scale factor s, 0 ≤ x < p and 1 ≤ s < p, such that k = (p − 1)x + s − 1. It is useful to

think of timesteps as being indexed by ordered pairs (x, s) rather than by the corresponding

congruence class mod T , so we will sometimes abuse notation and refer to timestep (x, s),

when we mean timestep k = (p−1)x+s−1. The connection schedule of R0, during timesteps

t ≡ k (mod T ), uses permutation π0
k(a) = a+ sv(x), where x and s are the phase number

and scale associated to k. Thus, each phase takes (p− 1) timesteps, and allows each node a

to connect with nodes a′ where the difference a′ − a belongs to the one-dimensional linear

subspace generated by v(x).
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As described above, RN(g, C) is a distribution over all ORN designs Rτ which are

equivalent to R0 up to re-labeling. When we sample a random design Rτ , we sample

a uniformly random permutation of the node set τ : Fhp → Fgp, producing the schedule

πτk(a) = τ−1
(
π0
k

(
τ(a)

))
. Note that, for every edge from node a to node πτt (a) in Rτ , there is

a unique equivalent edge from τ(a) to τ(πτt (a)) in R0.

6.2 Routing Scheme

Our routing scheme for R0 constructs routing paths composed of at most one physical hop

in each of g + 1 consecutive phase blocks. Such a path can be identified by the node and

timestep at which it originates, the phases in which it traverses a physical hop, and the scale

factors applied to the Vandermonde vectors defining each of those phases. Our first definition

specifies a structure called a pseudo-path that encodes all of this information.

Definition 14. A k-hop pseudo-path from a to b starting at time t is a sequence of ordered

pairs (x1, α1), . . . , (xk, αk) such that:

• x1, . . . , xk are phases belonging to distinct, consecutive phase blocks beginning with

the first complete phase block after time t;

• α1, . . . , αk ∈ Fp are scalars;

• b− a = α1v(x1) + α2v(x2) + · · ·+ αkv(xk).

A non-degenerate pseudo-path is one satisfying α1 6= 0 and αk 6= 0.

The path corresponding to a pseudo-path is the path in the virtual topology that starts at

a, traverses physical edges in timesteps ki = (xi, αi) for all i such that αi 6= 0, and traverses

virtual edges in all other timesteps.
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Note that the path corresponding to a k-hop pseudo-path may contain fewer than k

physical hops. Two distinct pseudo-paths may correspond to the same path, if the only

difference between the pseudo-paths lies in the timing of the phases with αj = 0, i.e. the phases

in which no physical hop is taken. Distinguishing between pseudo-paths that correspond to

the same path is unnecessary for the purpose of describing the edge sets of routing paths, but

it turns out to be essential for the purpose of defining and analyzing the distribution over

routing paths employed by our routing schemes.

Our oblivious routing scheme for R0 divides flow among routing paths in proportion to a

probability distribution over paths defined as follows. To sample routing path from a to b

starting at time t, we sample a uniformly random non-degenerate (g + 1)-hop pseudo-path

from a to b that starts at time t. We then translate this pseudo-path into the corresponding

path, and use that as a routing path from a to b. In other words, our oblivious routing scheme

divides flow among paths in proportion to the number of corresponding non-degenerate

(g + 1)-hop pseudo-paths.

To analyze the oblivious routing scheme, or even to confirm that it is well-defined, it will

help to prove a lower bound on the number of solutions to the equation

b− a = α1v(x1) + · · ·+ αg+1v(xg+1) (6.3)

that satisfy α1 6= 0, αg+1 6= 0. For any i ∈ [g + 1] and β ∈ Fp, there is a unique solution

to (6.3) with αi = β. This is because the equation

b− a− βv(xi) =
∑
j 6=i

αjv(xj)

is a system of g linear equations in g unknowns, with an invertible coefficient matrix. (Here

we have used the fact that the vectors v(xj) are distinct Vandermonde vectors, hence linearly

independent.) Hence, the total number of solutions of (6.3) is p, and there is exactly one

solution with α1 = 0 and exactly one solution with αg+1 = 0. The number of solutions with

α1 6= 0 and αg+1 6= 0 is therefore either p−2 or p−1. Since there are Cg+1 ways to choose the
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g+ 1 distinct phases x1, . . . , xg+1, we conclude that the number of non-degenerate (g+ 1)-hop

pseudo-paths from a to b starting at time t is between (p− 2)Cg+1 and (p− 1)Cg+1.

The routing scheme of Rτ , for general τ , is defined using the bijection between the edges

of Rτ and those of R0. For any path from node a to node b in Rτ there is a unique equivalent

path from τ(a) to τ(b) in R0. To route from a to b in Rτ , simply apply the inverse of this

bijection to the probability distribution over routing paths from τ(a) to τ(b) in R0.

6.3 Latency-Throughput Tradeoff

It is clear that any design Rτ ∼ RN(g, C) will have maximum latency C(g + 2)(p − 1) <

C(g + 2)N1/g. (The factor of g + 2 reflects the fact that messages wait for the duration of at

most one phase block, then use the following g + 1 phase blocks to reach their destination.)

Thus, we focus on proving the achieved throughput rate with high probability in this section.

Parts 1 and 2 of the following theorem correspond to parts 1 and 2 of Theorem 7, respectively.

Theorem 8. Given a fixed throughput value r, let g = g(r) = b1
r
− 1c and ε = ε(r) =

g + 1− (1
r
− 1), and assume ε 6= 1. As N ranges over the set of prime powers pg for primes

p exceeding max
{
C(g + 1), 2 + 2

1−ε

}
, let γ = ln

(
g−ε−2/(p−2)

g−1

)
and C = log logN

γ2
ln(N). Then:

1. the design R0 achieves throughput r with high probability under the uniform distribution,

2. the family of distributions RN(g, C) achieves throughput r with high probability.

Note that if ε = 1, i.e. if 1
r
∈ Z, then there are no primes p which exceed 2 + 2

1−ε , therefore

we condition against ε = 1.

Both parts of Theorem 8 will be proven by focusing on the congestion of physical edges

in the design R0. For part 1, the focus on edges in R0 is obvious. For part 2, we make use of
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the isomorphism between Rτ and R0. Rather than considering a fixed demand function D

and random design Rτ , we may consider the fixed design R0 and random demand function

Dτ (t) = P−1D(t)P where P denotes the permutation matrix with Pi,τ(i) = 1 for all i.

Now, focusing on any particular edge e ∈ Evirt(R
0), we bound the probability that e

is overloaded by breaking down the (random) amount of flow traversing e as a sum, over

0 ≤ q ≤ g, of the amount of flow that crosses e on the (q + 1)-th hop of a routing path. We

will describe how to interpret each of these random amounts of flow as the value of a bilinear

form on a pair of vectors randomly sampled from an orbit of a permutation group action.

(The bilinear form is related to the demand function D, and the pair of vectors is related

to the routing scheme.) We will then use a Chernoff-type bound for the values of bilinear

forms on permutation group orbits, to bound the probability that the amount of (q + 1)-th

hop flow crossing e is larger than average. Finally we will impose a union bound to show the

probability that any edge gets overloaded is extremely small.

Existing Chernoff-type bounds for negatively associated random variables are sufficient

for the tail bound in the first part of the theorem, but not for the second part. (See Remark 1

below.) Instead, we prove the following novel tail bound for the distribution of bilinear sums

on orbits of a permutation group action.

Theorem 9. Suppose u, v ∈ (R≥0)N are non-zero, non-negative vectors satisfying(
‖u‖1
‖u‖∞

)(
‖v‖1
‖v‖∞

)
≥ CN (6.4)

for some C ≥ 1. Let D be any N-by-N doubly stochastic matrix and consider the bilinear

form

B(x,y) =
∑
i 6=j

Dijxiyj. (6.5)

Let M = 1 if D is a permutation matrix, and M = N2 otherwise. If P is a uniformly

random N-by-N permutation matrix then:
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1. for any γ > 0,

Pr

(
B(u, Pv) ≥ eγ

‖u‖1 ‖v‖1
N

)
≤Me−

1
2
γ2C ; (6.6)

2. for any γ > 0,

Pr

(
B(Pu, Pv) ≥ eγ

‖u‖1 ‖v‖1
N

)
≤ 15Me−

1
100

γ2C . (6.7)

The proof of Theorem 9 is deferred to Section 6.4.

6.3.1 Proof of Theorem 8

Proof. Due to Lemma 1, may assume without loss of generality that the demand matrix D(t)

is doubly stochastic for all t. For part 1 of the theorem this is because D(t) is assumed to be

a random permutation matrix. For part 2, it is because every non-negative matrix whose

row and column sums are bounded above by 1 can be made into a doubly stochastic matrix

by (weakly) increasing each of the matrix entries. Modifying the demand function in this

way cannot decrease the induced flow on any edge, so it cannot increase the probability that

f(R, rD) is feasible. Thus, we will assume for the remainder of the proof that D(t) is doubly

stochastic for all t.

Fix an edge e and 0 ≤ q ≤ g, and consider the amount of flow traversing edge e traveling

on paths where edge e occurs in the (q + 1)-th phase block1 of the flow path. We will denote

this value as the amount of (q + 1)-th hop flow traversing edge e.2

First we examine q = 0. First-hop flow traversing edge e originates at source node tail(e)

during the phase block preceding the one to which e belongs. There are C(p− 1) time steps

1We number phase blocks in a flow path using the convention that phase block 1 is the first complete
phase block in the flow path. Recall from Section 6.2 that this is also the first phase block in which it is
possible that the flow is transmitted on a physical edge.

2Note this is a different value than if edge e is the (q + 1)-th physical hop traversed on the path. It may
be the case that in some earlier phase blocks of the path, flow may not have traversed any physical hop. If
this is confusing, revisit pseudo-paths in Section 6.2.
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during that phase block, and r units of flow per time step originate at tail(e). Each unit

of flow is divided evenly among a set of at least (p − 2)Cg+1 pseudo-paths, at most Cg of

which begin with edge e as their first hop. (After fixing the first hop and the destination of a

(g + 1)-hop pseudo-path, the rest of the path is uniquely determined by the g-tuple of phases

x2, . . . , xg+1.) Hence, of the rC(p− 1) units of flow that could traverse e as their first hop,

the fraction that actually do traverse e as their first hop is at most Cg

(p−2)Cg+1 . Consequently,

the amount of first-hop flow on e is bounded above by rC(p−1)·Cg
(p−2)Cg+1 =

(
p−1
p−2

)
r. (Note that this

is not a probabilistic statement; the upper bound on first-hop flow holds with probability 1.)

A symmetric argument shows that the amount of last-hop flow on e is bounded above by(
p−1
p−2

)
r as well.

Now suppose 1 ≤ q ≤ g − 1, and let Xi be the random variable realizing the amount

of (q + 1)-th hop flow traversing edge e due to source node i. Clearly, the total amount

of (q + 1)-th hop flow traversing e will be
∑

iXi. Let I denote the interval of timesteps

constituting the qth phase block before the phase block that contains edge e; recall that this

means I is made up of C(p− 1) consecutive timesteps. Let

Dij =
1

rC(p− 1)

∑
t∈I

D(t)ij

denote the (normalized) rate of flow demanded by source-destination pair (i, j) during phase

block I. The normalizing factor makes D into a doubly stochastic matrix. Let ρ−q (i, e) denote

the number of q-hop pseudo-paths from i to tail(e) with non-zero first coefficient, and let

ρ+g−q(e, j) denote the number of (g − q)-hop pseudo-paths from head(e) to j with non-zero

last coefficient. Finally, let ρg+1(i, j) denote the number of non-degenerate (g + 1)-hop

pseudo-paths from i to j. Of the flow that originates at i with destination j during time

window I, the fraction of flow that traverses edge e under our routing scheme for R0 is
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ρ−q (i, e) · ρ+g−q(e, j)/ρg+1(i, j). Hence,

Xi =
∑

j∈[N ], j 6=i

ρ−q (i, e) · ρ+g−q(e, j)
ρg+1(i, j)

·

(∑
t∈I

D(t)ij

)

≤
∑

j∈[N ], j 6=i

ρ−q (i, e) · ρ+g−q(e, j) · rC(p− 1) ·Dij

(p− 2)Cg+1

=

(
p− 1

p− 2

)
r
∑

j∈[N ], j 6=i

Dij

(
ρ−q (i, e)

Cq

)(
ρ+g−q(e, j)

Cg−q

)
N∑
i=1

Xi ≤
(
p− 1

p− 2

)
r
∑
i 6=j

Dij

(
ρ−q (i, e)

Cq

)(
ρ+g−q(e, j)

Cg−q

)
=
∑
i 6=j

Dijuivj (6.8)

where

ui =

(
p− 1

p− 2

)
r

(
ρ−q (i, e)

Cq

)
, vj =

ρ+g−q(e, j)

Cg−q . (6.9)

To prove Theorem 8.1, when the ORN design is fixed to be R0 and the demand function

is the time-stationary demand Dσ for a random permutation σ, then

∑
i 6=j

Dijuivj =
∑
i 6=σ(i)

uivσ(i) ≤
N∑
i=1

uivσ(i).

The distribution of σ is the same as the distribution of τ ◦ π where π is an arbitrary (non-

random) permutation without fixed points, and τ is a uniformly random permutation. Letting

P denote the permutation matrix representing τ , the amount of (q + 1)th hop flow on edge e

is stochastically dominated by

N∑
i=1

uivτ(π(i)) = Bπ(u, Pv)

where Bπ denotes the bilinear form Bπ(x,y) =
∑N

i=1 xiyπ(i).

Similarly, to prove Theorem 8.2, recall that we are drawing a random ORN design Rτ

from the distribution RN(C, r), and that the induced (q + 1)-th hop flow on the edge of Rτ

corresponding to e, under demand function D, is equal to the induced (q + 1)-th hop flow

on edge e under demand function P−1DP . Again letting P denote the permutation matrix
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representing τ , this induced flow is bounded above by

∑
i 6=j

(P−1DP )ijuivj =
∑
i 6=j

Dijuτ(i)vτ(j) = B(Pu, Pv)

where B is the bilinear form B(x,y) =
∑

i 6=j Dijxiyj.

Hence, we are in a position to prove tail bounds on the induced (q + 1)-th hop flow on

edge e, using the Chernoff-type bounds in Theorem 9, provided we can estimate the norms

‖u‖1, ‖v‖1, ‖u‖∞, ‖v‖∞. For ‖u‖1 we have ‖u‖1 = p−1
p−2 ·

r
Cq
·
∑N

i=1 ρ
−
q (i, e). The sum on the

right side can be calculated by realizing that it counts the total number of q-hop pseudo-paths

with non-zero first coefficient that end at tail(e). There are Cq ways of choosing a q-tuple of

phases from the q phase blocks preceding the phase block containing e, for each such choice

there are (p − 1)pq−1 ways to choose a sequence of coefficients beginning with a non-zero

value. Hence,

‖u‖1 =
p− 1

p− 2
· r
Cq
· (p− 1)pq−1Cq =

(p− 1)2

p(p− 2)
· pq · r.

Similarly,

‖v‖1 =
p− 1

p
· pg−q.

Now we turn to bounding ‖u‖∞, ‖v‖∞ from above, which is tantamount to bounding the

number of q-hop pseudo-paths from i to tail(e) and (g − q)-hop pseudo-paths from head(e)

to j, with non-zero first and last coefficients respectively. One such upper bound is easy to

derive: for each of the Cq many ways of selecting one phase xi from each of the q phase blocks

preceding tail(e), there is at most one q-hop pseudo-path from i to tail(e) using that sequence

of phases. This is because the existence of two distinct such pseudo-paths would imply

that the vector tail(e)− i could be represented in two distinct ways as a linear combination

of vectors in the set {x1, . . . ,xq}, violating linear independence. For an analogous reason,

ρ+q (head(e), j) ≤ Cg−q.
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However, if q ≤ g/2 then there is a tighter upper bound: ρ−q (i, tail(e)) ≤ Cq−1. To see

why, first observe that any 2q of the C(g + 1) Vandermonde vectors used in the g + 1 phase

blocks preceding edge e must be linearly independent, since 2q ≤ g. If (x1, α1), . . . , (xq, αq)

and (x′1, α
′
1), . . . , (x

′
q, α

′
q) are two pseudo-paths from i to tail(e) then

{(xi, αi) | αi 6= 0} = {(x′j, α′j) | α′j 6= 0},

as otherwise the vector (tail(e)− i) could be represented in two inequivalent ways as a linear

combination of elements of {x1, x′1, x2, x′2, . . . , xq, x′q}, contradicting linear independence.

Consequently, when q ≤ g/2, two distinct q-hop pseudo-paths from i to tail(e) can only

differ in the choice of phases xi with αi = 0. In other words, every q-hop pseudo-path

from i to tail(e) has the same coefficient sequence α1, α2, . . . , αq, and in constructing the

corresponding phase sequence we have only one choice of phase when αi 6= 0 and C choices

when αi = 0. Furthermore, there is at least one value of i, namely i = 1, for which αi 6= 0.

Consequently, ρ−q (i, tail(e)) ≤ Cq−1 when q ≤ g/2, as claimed. An analogous argument proves

that ρ+q (head(e), j) ≤ Cg−q−1 when g − q ≤ g/2. For every q, at least one of q, g − q is less

than or equal to g/2, and hence

ρ−q (i, tail(e)) · ρ+q (head(e), j) ≤ max{Cq−1 · Cg−q, Cq · Cg−q−1} = Cg−1

‖u‖∞‖v‖∞ ≤
(
p− 1

p− 2

)
r

(
ρ−q (i, tail(e)) · ρ+q (head(e), j)

Cg

)
≤
(
p− 1

p− 2

)
r

C(
‖u‖1‖v‖1
‖u‖∞‖v‖∞

)
≥

(p−1)3
p2(p−2) · p

g · r
p−1
p−2 ·

r
C

=

(
p− 1

p

)2

CN ≥ 1

2
CN

for p ≥ 5. If we observe that ‖u‖1‖v‖1
N

= (p−1)3
p2(p−2)r < r, then we may use Theorem 9 to conclude

that for any γ > 0,

Pr (Bπ(u, Pv) ≥ eγr) ≤ e−
1
4
γ2C

Pr (B(Pu, Pv) ≥ eγr) ≤ 15N2e−
1

200
γ2C .

Supposing C ≥ log logN
γ2

ln(N) for some positive integer, then we union bound over all
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C(p− 1)(g + 1)N edges of the virtual topology and all 1 ≤ q ≤ g − 1 to find

Pr[any edge has ≥ eγr (q + 1)-th hop flow for some 1 ≤ q ≤ g − 1]

≤ NC(p− 1)(g + 1)(g − 1) · 15N2
(
e−

1
200

γ2
)C

≤ N3+1/g log logN

γ2
ln(N)(g2 − 1)e−

1
200

log logN ln(N)

≤
(
N3+1/g log logN ln(N)

γ2
(g2 − 1)

)
N−

1
200

log logN

≤ O
(

1

γ2Nd

)
for any constant d.

This fulfills our definition of with high probability for fixed γ.

Finally, we need to show that if none of the bad events as described above occur, if every

edge has at most eγr (q + 1)-th hop flow for 1 ≤ q ≤ g − 1, then no edge will be overloaded.

Recall also that the (q + 1)-th hop flow on e for q ∈ {0, g} is
(
p−1
p−2

)
r = r + r

p−2 . Recall also

that eγ = g−ε−2/(p−2)
g−1 , g = b1

r
− 1c, and ε = g + 1 −

(
1
r
− 1
)

= 2 + g − 1
r
. Hence, if no bad

events occur, the induced flow on each edge will be bounded above by

2r +
2r

p− 2
+ (g − 1)eγr =

(
2 +

2

p− 2
+ g − ε− 2

p− 2

)
r = (2 + g − ε) r =

(
1

r

)
r = 1.

6.4 A Tail Bound for Bilinear Sums

In Section 6.3, our analysis of the distribution of the amount of flow traversing an edge e

depends on certain tail bounds for the distribution of bilinear sums on orbits of a permutation

group action. The relevant tail bound is stated as Theorem 9 above. This section is devoted

to proving the theorem. The proof will make use of a Chernoff-type concentration bound

for negatively associated random variables. We begin by recalling some definitions and facts

about negative association; see [18, 27, 48] for an introduction to this topic.
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Definition 15 ([27, 30]). A set of random variables X1, ..., Xn are negatively associated if for

any two functions f, g : Rn → R that are either both monotone increasing or both monotone

decreasing, and dependent on 3 disjoint subsets of indices Sf , Sg ⊆ [n], then

E[f( ~X) · g( ~X)] ≤ E[f( ~X)] · E[g( ~X)]

Many examples of negatively associated random variables can be constructed using the

following definition and lemma.

Definition 16. An n by m matrix A has consistently ordered rows if there exists some

permutation π : [m] → [m] of the columns of A such that for all rows i ∈ [n], A[i, π(1)] ≤

· · · ≤ A[i, π(m)].

Lemma 10. Suppose A is an n by n matrix, and X1, ..., Xn are random variables sampled

by the following process: sample a permutation π : [n]→ [n] uniformly at random, and set

Xi = A[i, π(i)]. If the entries of A are non-negative and A has consistently ordered rows,

then X1, ..., Xn are negatively associated.

Proof. This will be proved by induction on n. Note that negative association amounts to

showing that the covariance Cov(f( ~X), g( ~X)) ≤ 0. Without loss of generality, since A has

consistently ordered rows, we can assume that A[i, 1] ≤ ..., A[i, n] for all i ∈ [n].

The base case is when n = 2. Then A is a 2 by 2 matrix, and since f ,g are both either

monotone increasing or monotone decreasing, then

Cov(f( ~X), g( ~X)) =
1

4

(
f(A[1, 1])g(A[2, 1]) + f(A[1, 2])g(A[2, 2])

− f(A[1, 1])g(A[2, 2])− f(A[1, 2])g(A[2, 1])
)
≤ 0

Now suppose the lemma is true for n = k, and for now suppose f, g are both monotone

increasing. We will need two properties of covariance.

3For the purposes of this definition, an n-variate function f is dependent on a set of indices I ⊆ [n] if
f(x1, . . . , xn) = f(y1, . . . , yn) holds whenever xi = yi for all i ∈ I.
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Property 1: (law of total covariance) Let X, Y, and Z be any random variables. Then

Cov(X, Y ) = E[Cov(X, Y )|Z] + Cov(E[X|Z],E[Y |Z]).

Property 2: (Chebyshev’s algebraic inequality) Given a random variable Z and monotone

increasing h1 and monotone decreasing h2, then Cov(h1(Z), h2(Z)) ≤ 0.

Now, consider the random variable I = π−1(1). This indicates which random variable Xi

realizes its smallest value. Then by Property 1,

Cov(f( ~X), g( ~X)) = E
[
Cov(f( ~X), g( ~X))|I

]
+ Cov

(
E
[
f( ~X)|I

]
,E
[
g( ~X)|I

])
For any fixed I, the first term is random over 1 fewer variable, meaning this falls under

the inductive hypothesis and is ≤ 0.

To show the second term is ≤ 0, we will show that as functions of I, one of E
[
f( ~X)|I

]
or

E
[
g( ~X)|I

]
is monotone increasing, and the other is monotone decreasing.

Due to how the random variables Xi are chosen from A, they can be equivalently chosen

from any matrix A′ equivalent up to a re-ordering of rows. We will re-order the rows of A to

enforce h1(I) = E
[
f( ~X)|I

]
monotone increasing and h2(I) = E

[
g( ~X)|I

]
monotone decreasing

in I.

Let σf : [|Sf |]→ Sf impose the ordering h1(σf (1)) ≤ . . . ≤ h1(σf (|Sf |)). Additionally, let

σg : [|Sg|]→ Sg impose h2(σg(1)) ≤ . . . ≤ h2(σg(|Sg|)).

Note that for x ∈ Sf , and y 6∈ Sf , then E
[
f( ~X)|I = x

]
≤ E

[
f( ~X)|I = y

]
, and the same

holds true for g and Sg. We will re-order the rows of A in the following way: σf (1), . . . , σf (|Sf |),

followed by all indices not within either Sf or Sg, followed by σg(|Sg|), . . . , σg(1). Then h1 will

be monotone increasing and h2 will be monotone decreasing, thus showing Cov(f( ~X), g( ~X)) ≤

0. An almost identical proof will show this true for f, g both monotone decreasing.

Corollary 2. If u, v ∈ (R≥0)N are non-negative vectors, then the random variables X1, X2, . . . , XN
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defined by sampling a uniformly random permutation π : [N ]→ [N ] and setting Xi = uivπ(i)

are negatively associated.

Proof. The matrix A = uvT has non-negative entries and consistently ordered rows, so we

may apply Lemma 10 to deduce the corollary.

Corollary 3. Let X = {x1, x2, . . . , xm} be any multiset of non-negative numbers, and for

some n ≤ m let X1, X2, . . . , Xn denote random variables obtained by drawing n uniformly

random samples without replacement from X . (In other words, the conditional distribution

of Xi given X1, . . . , Xi−1 is uniform over the multiset X \{X1, . . . , Xi−1}.) Then X1, . . . , Xn

are negatively associated.

Proof. The special case n = m, in which the variables X1, . . . , Xm constitute a random

permutation of the elements of X , can be obtained from Corollary 2 by setting u =

(x1, x2, . . . , xm)T and v = (1, 1, . . . , 1)T. The general case in which n ≤ m can then be

obtained by observing that the property of negative association is preserved under taking

subsets of a set of random variables.

We will be making use of the following Chernoff bound for negatively associated random

variables.

Lemma 11. Suppose X1, ..., XN are negatively associated variables for which Xi ∈ [0, 1]

always, and E[
∑

iXi] = µ. Then Chernoff’s multiplicative tail bound holds. That is, for any

γ > 0,

Pr

[∑
i

Xi ≥ eγµ

]
≤ [exp (eγ − 1− γeγ)]µ < e−

1
2
γ2µ (6.10)

Pr

[∑
i

Xi ≤ e−γµ

]
≤
[
exp

(
e−γ − 1 + γe−γ

)]µ
. (6.11)

Furthermore, when 0 < γ < 1
2

the second inequality implies

Pr

[∑
i

Xi ≤ e−γµ

]
≤ e−

1
3
γ2µ. (6.12)
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The Chernoff bound is often expressed in terms of the tail probabilities Pr [
∑

iXi ≥ (1 + δ)µ]

and Pr [
∑

iXi ≤ (1− δ)µ], with the bound on the right side of the inequality then being

written as a function of δ. For a proof, see [18, 48]. The version of the Chernoff bound stated

above is obtained from the usual one by substituting γ = ln(1 + δ) in the first inequality and

γ = − ln(1− δ) in the second.

The inequality −eγ + 1 + γeγ ≥ 1
2
γ2 is derived by writing it in the equivalent form∫ γ

0
tet dt ≥

∫ γ
0
t dt and comparing integrands. The inequality −e−γ + 1 − γe−γ ≥ 1

3
γ2 is

justified by using Taylor’s Theorem to deduce that the left side is bounded below by 1
2
γ2− 1

3
γ3

for 0 < γ < 1 and then noting that 1
2
γ2 ≥ 1

3
γ2 + 1

3
γ3 when 0 < γ < 1

2
.

As a first application of Lemma 11 we can prove the first tail bound asserted in Theorem 9.

Lemma 12. Suppose u, v ∈ (R≥0)N are non-zero, non-negative vectors satisfying(
‖u‖1
‖u‖∞

)(
‖v‖1
‖v‖∞

)
≥ CN (6.4)

Suppose D is a doubly stochastic matrix defining a bilinear form B(·, ·) via

B(x,y) =
∑
i 6=j

Dijxiyj. (6.5)

Let M = 1 if D is a permutation matrix, and M = N2 otherwise. If P is a uniformly random

N-by-N permutation matrix then for any γ > 0,

Pr

(
B(u, Pv) ≥ eγ

‖u‖1 ‖v‖1
N

)
≤Me−

1
2
γ2C . (6.6)

Proof. The Birkhoff-von Neumann Theorem says that D can be expressed as a convex

combination of permutation matrices, and Carathéodory’s Theorem says that there exists

such an expression in which the number of constituent permutation matrices is at most

(N − 1)2 + 1, which is bounded above by N2. Hence, D can be expressed as a convex

combination of at most M permutation matrices, where M is defined as in the lemma
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statement. The bilinear form B is thus a convex combination of at most M bilinear forms

Bσ, where Bσ is defined for a permutation σ by

Bσ(u,v) =
∑

i:σ(i) 6=i

uivσ(i).

We will prove the special case of the lemma when D is a permutation matrix and B = Bσ for

some σ; the general case will then follow by the union bound.

If τ is the random permutation such that Pi,τ(i) = 1 for all i, then for any permutation σ the

composition π = τ ◦σ is uniformly distributed over all permutations of [N ]. Consequently, by

Corollary 2, the random variables Xi =
uivπ(i)

‖u‖∞‖v‖∞ are negatively associated. By construction,

they take values between 0 and 1. Furthermore, the expected value of
∑N

i=1Xi can be

computed by linearity of expectation, using the fact that the event π(i) = j has probability

1
N

for all j.

µ = E

[
N∑
i=1

Xi

]
=

1

N

N∑
i=1

N∑
j=1

uivj
‖u‖∞‖v‖∞

=
1

N

‖u‖1‖v‖1
‖u‖∞‖v‖∞

≥ C.

Applying Lemma 11, the probability that
∑N

i=1Xi exceeds eγ

N
‖u‖1 ‖v‖1
‖u‖∞u‖∞ is less than e−(1/2)γ

2C .

Inequality (6.6) follows because Bσ(u,v) ≤ ‖u‖∞‖v‖∞
∑N

i=1Xi.

Remark 1. After seeing the proof of the tail bound (6.6), it is tempting to try proving an

analogous tail bound for B(Pu, Pv) using the random variables X1, . . . , XN defined by

Xi =
uτ(i)vτ(σ(i))
‖u‖∞‖v‖∞

.

The trouble is that these random variables may fail to be negatively associated. As a simple

example, suppose u = v = (1, 1, 0, 0)T and let σ = (1 2)(3 4) be the permutation of {1, 2, 3, 4}

that transposes the first and last pairs of elements. Then X1 = uτ(1)vτ(2) and X2 = uτ(2)vτ(1).

When τ({1, 2}) = {1, 2} we have X1 = X2 = 1, and otherwise X1 = X2 = 0. Hence,

E[X1X2] = 1
6
> E[X1]E[X2], violating negative association.

Despite the counterexample in Remark 1, we will still be able to prove a tail bound

for B(Pu, Pv) using negative association and the Chernoff bound, however we will need
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to pursue a more indirect strategy. We begin with the following tail bound for random

submatrices of a non-negative rank-one matrix.

Lemma 4. Suppose u, v ∈ (R≥0)N are non-zero, non-negative vectors satisfying (6.4). For

any K ≤ N/2 let (Q,R) denote a uniformly random sample from the set of ordered pairs of

K-element subsets of [N ] that are disjoint from one another. Then for 0 < γ < 1,

Pr

(∑
i∈Q

∑
j∈R

uivj ≥ eγ
K2

N2
‖u‖1‖v‖1

)
≤ 2e−

1
8
γ2CK/N (6.13)

Pr

(∑
i∈Q

∑
j∈R

uivj ≤ e−γ
K2

N2
‖u‖1‖v‖1

)
≤ 2e−

1
12
γ2CK/N . (6.14)

Proof. If
∑

i∈Q
∑

j∈R uivj ≥ eγ K
2

N2‖u‖1‖v‖1 then at least one of the inequalities

∑
i∈Q

ui
‖u‖∞

≥ eγ/2
K

N

‖u‖1
‖u‖∞

(6.15)

∑
j∈R

vi
‖v‖∞

≥ eγ/2
K

N

‖v‖1
‖v‖∞

(6.16)

is satisfied. Similarly, if
∑

i∈Q
∑

j∈R uivj ≤ e−γ K
2

N2‖u‖1‖v‖1 then at least one of the inequali-

ties

∑
i∈Q

ui
‖u‖∞

≤ e−γ/2
K

N

‖u‖1
‖u‖∞

(6.17)

∑
j∈R

vi
‖v‖∞

≤ e−γ/2
K

N

‖v‖1
‖v‖∞

(6.18)

is satisfied. To bound the probabilities of these events, let X1, X2, . . . , XK be random

variables obtained by drawing K uniformly random samples without replacement from the

multiset { ui
‖u‖∞ | 1 ≤ i ≤ n} and observe that X1 + · · ·+XK and

∑
i∈Q

ui
‖u‖∞ are identically

distributed. By Corollary 3 the random variables X1, . . . , XK are negatively associated, by

construction they are [0, 1]-valued, and by linearity of expectation their sum has expected

value K
N
‖u‖1
‖u‖∞ . The assumption that

(
‖u‖1
‖u‖∞

)(
‖v‖1
‖v‖∞

)
≥ CN , combined with the inequality

‖v‖1
‖v‖∞ ≤ N , implies K

N
‖u‖1
‖u‖∞ ≥ CK/N . The Chernoff bound now implies that the probability of
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inequality (6.15) being satisfied is at most e−
1
8
γ2CK/N , and the probability of inequality (6.17)

being satisfied is at most e−
1
12
γ2CK/N . A similar argument using K random variables drawn

without replacement from the multiset { vi
‖v‖∞ | 1 ≤ i ≤ n} establishes that the probabilities of

inequalities (6.16) and (6.18) being satisfied are bounded above by e−
1
8
γ2CK/N and e−

1
12
γ2CK/N ,

respectively. The lemma now follows by applying the union bound.

We are now ready to restate and prove Theorem 9.

Theorem 9. Suppose u, v ∈ (R≥0)N are non-zero, non-negative vectors satisfying(
‖u‖1
‖u‖∞

)(
‖v‖1
‖v‖∞

)
≥ CN (6.4)

for some C ≥ 1. Let D be any N-by-N doubly stochastic matrix and consider the bilinear

form

B(x,y) =
∑
i 6=j

Dijxiyj. (6.5)

Let M = 1 if D is a permutation matrix, and M = N2 otherwise. If P is a uniformly

random N-by-N permutation matrix then:

1. for any γ > 0,

Pr

(
B(u, Pv) ≥ eγ

‖u‖1 ‖v‖1
N

)
≤Me−

1
2
γ2C ; (6.6)

2. for any γ > 0,

Pr

(
B(Pu, Pv) ≥ eγ

‖u‖1 ‖v‖1
N

)
≤ 15Me−

1
100

γ2C . (6.7)

Proof. The first tail bound, inequality (6.6), was already proven in Lemma 12, so we turn to

proving (6.7). As in the proof of (6.6), we will be using the Birkhoff-von Neumann Theorem,

Carathéodory’s Theorem, and the union bound to reduce to the case where the doubly
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stochastic matrix D is a permutation matrix. Accordingly, for the remainder of the proof we

will be focused on a fixed permutation σ and its associated bilinear form

Bσ(x,y) =
∑

i:σ(i)6=i

xiyσ(i),

and our goal will be to prove the tail bound (6.7) when B = Bσ and M = 1.

To start, we note that it is without loss of generality to assume that σ has at most

one fixed point. This is because if F is the fixed-point set of σ and |F | > 1, then we can

compose σ with a permutation whose fixed-point-set is the complement of F , to obtain a

fixed-point-free permutation σ̃ that agrees with σ on the complement of F . For every pair of

non-negative vectors x,y we have Bσ̃(x,y) ≥ Bσ(x,y), so an upper bound on the probability

of Bσ̃(Pu, Pv) ≥ eγ ‖u‖1 ‖v‖1
N

will suffice to prove an upper bound on the probability of the

same event for Bσ. Henceforth we will ignore the distinction between σ and σ̃ and we’ll

simply assume that σ has at most one fixed point. Let N∗ denote the complement of F in

[N ], i.e. N∗ = {i | σ(i) 6= i}.

Define the cycle diagram of σ to be the directed graph with vertex set N∗ and edge set

{(i, σ(i)) | i ∈ N∗}, which is a disjoint union of directed cycles. The next step of the proof

is to define a balanced 3-coloring χ : N∗ → {0, 1, 2} of the cycle diagram of σ, by which we

mean a proper 3-coloring such that each color is used at least b|N∗|/3c and at most d|N∗|/3e

times. We will then break down the bilinear form Bσ as a sum B
(0)
σ +B

(1)
σ +B

(1)
σ where for

q ∈ {0, 1, 2},

B(q)
σ (u, v) =

∑
i:χ(i)=q

uivσ(i),

and we will prove exponential tail bounds for each of the quantities B
(q)
σ (Pu, Pv). The

purpose of the 3-coloring is to allow us to condition on an event that breaks up dependencies

such as the one identified in Remark 1, enabling the use of negative association and Chernoff

bounds.
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One can find a balanced coloring of the cycle diagram of σ by a greedy strategy, combining

the following two simple observations.

1. Every directed 2-cycle has a balanced 3-coloring. If the cycle has length k, then color

the ith vertex of the cycle with χ(i) = i (mod 3) unless k ≡ 1 (mod 3), in which case

the first k − 1 vertices of the cycle are colored using χ(i) = i (mod 3) and the last

vertex is colored with the unique color that differs from both of its neighbors’ colors.

2. The disjoint union of two graphs with balanced 3-colorings also has a balanced 3-coloring.

If a balanced 3-coloring of a graph with n vertices, let us say that a color is overused if

it is used more than bn/3c times. If graph G is the disjoint union of G0 and G1, each

of which has a balanced 3-coloring, let k0 and k1 denote the number of overused colors

in G0 and G1, respectively. If k0 + k1 ≤ 3 then we can recolor G1 if necessary so that

its set of overused colors is disjoint from the set of overused colors in G0. The union of

the two colorings is then a balanced 3-coloring of G. If k0 + k1 > 3 then it must be

the case that k0 = k1 = 2, in which case we can recolor G1 if necessary so that each

q ∈ {0, 1, 2} is overused in at least one of G0, G1, and exactly one color is overused in

both. The union of the two colorings is then a balanced coloring of G.

Having defined the coloring χ we now focus on one specific color q ∈ {0, 1, 2} and aim to

prove a tail bound for B
(q)
σ (Pu, Pv) when τ is a uniformly random permutation and P is

the permutation matrix with Pi,τ(i) = 1 for all i. To do so we will define I = χ−1({q}) to

be the set of indices i ∈ N∗ whose color is q, and we will condition on the random variable

Z = τ |N∗\I , the restriction of τ to indices whose color differs from q. Some useful observations

are the following.

[O1] The set Q = τ(I) is uniquely determined by Z: it is equal to the complement of

τ(N∗ \ I) in N∗.
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[O2] The set R = τ(σ(I)) is also uniquely determined by Z. In fact, because χ(σ(i)) 6= χ(i)

for all i, the set σ(I) must be disjoint from I, so the value of τ(i) for each i ∈ σ(I) is

determined by Z.

[O3] Let Kq = |I|. Since I and σ(I) are disjoint Kq-element subsets of N∗ and τ is

a uniformly random permutation of N∗, the joint distribution of the pair of sets

(Q,R) = (τ(I), τ(σ(I)) is the uniform distribution on ordered pairs of disjoint Kq-

element subsets of N∗.

[O4] Conditional on Z, the restriction of τ to I is a uniformly random bijection between I

and Q.

Define a random variable Y by

Y =
∑
j∈Q

∑
k∈R

ujvk

and observe that the value of Y is determined by Z, since Z determines the sets Q and R.

By Observation [O4] and linearity of expectation we have

E[B(q)
σ (Pu, Pv) | Z] =

∑
i∈I

E[uτ(i)vτ(σ(i)) | Z] =
1

Kq

∑
j∈Q

∑
k∈R

ujvk =
Y

Kq

.

Our goal now turns to bounding the probabilities of the following “bad events.”

E
q
1 =

{
Y ≤ e−

5
7
γ
K2
q

N2
‖u‖1‖v‖1

}
E
q
2 =

{
Y ≥ e

4
7
γ
K2
q

N2
‖u‖1‖v‖1

}
E
q
3 =

{
B(q)
σ (Pu, Pv) ≥ e

3
7
γ Y

Kq

}
.

First, using Lemma 4 and the inequality K/N ≥ 1
N
b(N − 1)/3c ≥ 1/4, we have

Pr(Eq1) ≤ 2e−
1
12( 5γ

7 )
2 C

4 < 2e−
1

100
γ2C , Pr(Eq2) ≤ 2e−

1
8( 4γ

7 )
2 C

4 < 2e−
1

100
γ2C .

Next we turn to bounding the conditional probability Pr(Eq3 \ E
q
1 | Z = z), for each value

z in the support of Z. Recall that the value of Y is determined by Z, and the event Eq1 is
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determined by the value of Y . Hence, the values z in the support of Z may be partitioned

into two sets: Z0 is the set of z such that Eq1 does not occur when Z = z, and Z1 is the

set of z such that Eq1 occurs when Z = z. Obviously, for z ∈ Z1, Pr(Eq1 | Z = z) = 1 so

Pr(Eq3 \ E
q
1 | Z = z) = 0.

Assume henceforth that z ∈ Z0. Then Y > e−
5
7
γ K

2
q

N2‖u‖1‖v‖1. Now, let uQ denote

the subvector of u indexed by the elements of Q, and let vR denote the subvector of v

indexed by the elements of R. We will apply Lemma 12 to this pair of vectors. Note that

‖uQ‖1‖vR‖1 = Y . Hence,

‖uQ‖1‖vR‖1
‖uQ‖∞‖vR‖∞

≥ Y

‖u‖∞‖v‖∞
> e−

5
7
γ
K2
q

N2

‖u‖1‖v‖1
‖u‖∞‖v‖∞

≥ e−
5
7
γ
K2
q

N2
· CN >

e−
5
7Kq

N
· CKq

>
e−

5
7

4
CKq >

C

9
Kq.

By Observation [O4], the random variable B
(q)
σ (Pu, Pv) can be calculated by sampling a

uniformly random bijection π between Q and R and computing the sum
∑

i∈Q uivπ(i). Hence,

by Lemma 12,

Pr(Eq3 |Z = z ∈ Z0) ≤ e−
1
2
( 3
7
γ)2 C

9 < e−
1

100
γ2C .

Combining the cases z ∈ Z0 and z ∈ Z1, we have proven that Pr(Eq3 \ E
q
1 |Z) < e−

1
100

γ2C

pointwise. Hence,

Pr(Eq3 \ E
q
1) = EZ [Pr(Eq3 \ E

q
1 |Z)] < e−

1
100

γ2C .

Now, by the union bound, we find that

Pr(Eq2 ∪ E
q
3) ≤ Pr(Eq1 ∪ E

q
2 ∪ E

q
3) ≤ Pr(Eq1) + Pr(Eq2) + Pr(Eq3 \ E

q
1) ≤ 5e−

1
100

γ2C .

On the complement of Eq2 ∪ E
q
3, we have the inequalities

B(q)
σ (Pu, Pv) < e

3
5
γ Y

Kq

< e
3
5
γ · e

2
5
γ · 1

Kq

·
K2
q

N2
· ‖u‖1‖v‖1 = eγ

Kq

N
· ‖u‖1‖v‖1

N
.
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With probability at least 1−15e−
1

100
γ2C , the event Eq2∪E

q
3 does not occur for any q ∈ {0, 1, 2}.

In that case,

Bσ(Pu, Pv) = B(0)
σ (Pu, Pv) +B(1)

σ (Pu, Pv) +B(2)
σ (Pu, Pv)

< eγ
K0 +K1 +K2

N
· ‖u‖1‖v‖1

N
≤ eγ

‖u‖1‖v‖1
N

.

Hence, the negation of this inequality occurs with probability at most 15e−
1

100
γ2C , as claimed.

6.5 Proving the Topology Forms an Expander

In this section, we prove that the emulated graph Gem (see Definition 1) of the connection

schedule from Section 6.1 forms an expander graph. We rely on the spectral definition of edge

expansion, and thus we need to bound the second eigenvalue of the normalized adjacency

matrix of Gem. The main proof in this section follows a similar structure to the Simple Proof

of the Alon-Roichman Theorem by Zeph Landau and Alexander Russell [33], which relies

on some representation theory. So, the beginning of this section will be devoted to a recap

of the important tools from representation theory. We will then use Cheeger’s inequality to

show that Gem is an edge-expander.

Representation Theory Recap

A vector space V is a Hilbert space if it is equipped with an inner product 〈·, ·〉 that induces

a distance function on V , which in turn induces a complete metric space. A unitary operator

U on a Hilbert space V is a bounded linear function U : H → H which is both surjective,

and preserves the inner product of V . That is, 〈Ux, Uy〉 = 〈x, y〉 for all x, y ∈ V .

Let H be a finite group, and V be some finite dimensional Hilbert space. A representation
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ρ of H is a function ρ : H → U(V ), where V is some finite-dimensional Hilbert space

and U(V ) denotes the set of unitary operators on that Hilbert space. The dimension of

ρ, dρ, is the dimension of V . If we choose some basis of V (say, the elementary basis),

then we can associate each ρ(g) with a unitary matrix [ρ(g)], such that for every g, h ∈ H,

[ρ(gh)] = [ρ(g)][ρ(h)], using matrix multiplication.

Let us fix a representation ρ : H → U(V ), and consider some subspace W ⊆ V . We

say that W is invariant (with respect to ρ) if ρ(g)W ⊆ W for all g ∈ H. (Note that

if W is invariant w.r.t. ρ, then the restriction ρW : H → U(W ) given by restricting

each ρ(g) to W is also a representation of W .) If W is non-trivial (i.e. W 6= , V ), then

W⊥ = {u : ∀w ∈ W, 〈u,w〉 = 0} is also invariant w.r.t. ρ. When there is no non-trivial

subspace that is invariant w.r.t. ρ, then we say ρ is irreducible.

If V has a non-trivial invariant subspace W , then we may decompose V = W ⊕W⊥. This

is the natural decomposition of the operators ρ(g) = ρW (g) ⊕ ρW⊥(g). By repeating this

process, any representation ρ of H may be decomposed into its irreducible representations,

ρ = σ1 ⊕ . . .⊕ σk.

Two representations ρ and σ are said to be equivalent if they are the same up to isometric

change in basis. Any finite group H has a finite number of distinct irreducible representations

(up to equivalence). We let Ĥ denote a set of representations containing one from each

equivalence class.

Consider the trivial representation 1, which maps all elements of H to the identity operator

on C. Additionally, let R denote the regular representation, given by the permutation action

on H itself. Specifically, let C[H] = {
∑

g αg · g : αg ∈ C} be the |H|-dimensional vector

space of formal sums, equipped with an inner product for which 〈g, h〉 = 1 exactly when

g = h, and 〈g, h〉 = 0 otherwise. Then R : H → U(C[G]) given by linearly extending the rule

R(g)[h] = gh.
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While the trivial representation 1 is irreducible, R is not; in fact, every irreducible

representation ρ ∈ Ĥ appears in R with multiplicity equal to its dimension.

R =
⊕
ρ∈Ĥ

ρ⊕ . . .⊕ ρ
}
dρ times

Note that by counting dimensions on either side of this equation, this gives us the following

interpretation of |H|: |H| =
∑

ρ d
2
ρ.

Now let A(V ) be the collection of self-adjoint linear operators on V , which is still a finite

dimensional Hilbert space. For A ∈ A(V ), let ‖A‖ denote the operator norm of A which

equals the largest absolute value obtained by an eigenvalue of A. And, let

P (V ) = {A ∈ A(V ) : ∀v, 〈Av, v〉 ≥ 0}

be the cone of positive operators. This induces a partial order on A(V ) by defining A ≥ B

exactly when A−B ∈ P (V ). We interpret B ∈ [A1, A2] to means that A1 ≤ B ≤ A2.

Proposition 2. ([2]) Let V be a Hilbert Space of dimension d and A1, . . . , Ak be i.i.d.

random variables taking values in P (V ) with expected value E [Ai] = M ≥ µ1, and Ai ≤ 1.

Then for all ε ∈
[
0, 1

2

]
,

Pr

[
1

k

k∑
i=1

Ai ∈ [(1− ε)M, (1 + ε)M ]

]
≤ 2d · e

−ε2µk
2 ln 2 .

Definition 17. Let H be a finite group and S ⊂ H be a set of generators for H. Then the

Cayley graph X(H,S) is the graph obtained by taking elements of H as the vertices, and

including the edge (u, v) if u−1v ∈ S ∪ S−1, where S−1 = {s−1 : s ∈ S} .

Note that since S ∪ S−1 is closed under inverse, then edges are symmetric, that is

u−1v ∈ S ∪ S−1 ⇐⇒ v−1u ∈ S ∪ S−1.

Definition 18. Consider a graph G with node set V and edge set E. G is an ε-edge expander

if for all subsets S ⊆ V of size no more than 1
2
|V |,

|{(u, v) : u ∈ S, v 6∈ S}| ≥ ε
∑
v∈S

deg(v)
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where deg(v) is the degree of vertex v.

Definition 19. Let G be a d-regular graph with node set V and edge set E. The normalized

adjacency matrix A(G) is the |V | × |V |-dimensional matrix with elements

A(G)[u, v] =


1
d

if (u, v) ∈ E

0 otherwise.

It is not difficult to show that A(G) only has eigenvalues in the range [−1, 1], and that

its largest eigenvalue λ1(G) takes the value 1 exactly when G is a connected graph. For a

regular graph, let λ2(G) denote the second-largest absolute value of an eigenvalue of A(G).

That is, if we let x1, . . . , x|V | be the multiset of eigenvalues of A(G), with x1 = 1, then

λ2(G) = max{|x2|, . . . , |x|V ||}.

Lemma 13. (Cheeger’s Inequality). If G is a d-regular graph, then then the second

eigenvalue of A(G) lower bounds its expansion in the following way. If λ2(G) ≤ λ, then G

must be an ε-edge expander with ε ≥ 1−λ
2

.

We now have the tools to state the main result of this section.

Theorem 10. Let the graph G be the emulated graph of the connection schedule described

in Section 6.1 with h = 2. That is, for integer p, let x1, . . . , xC ∈ Zp be a set of C

scalars4 drawn independently and uniformly at random which define Vandermonde vectors

v(x1), . . . ,v(xC) ∈ Z2
p. G has nodes represented by vectors av in the vector space Z2

p, and

edges E = {(u, v) : au +αv(xi) = av for some xi and α ∈ Zp}. Then G is a 1
3
-edge expander

with high probability5 over the random choices of x1, . . . , xC, provided C ≥ Ω (log(p)).

Proof. Let x1, . . . , xC ∈ Zp be a set of C scalars, chosen independently and uniformly at

random, which define Vandermonde vectors v(x1), . . . ,v(xC) ∈ Z2
p. For each v(xi), define the

4In Section 6.1, the scalars x1, . . . , xC are required to be distinct. In this theorem, however, x1, . . . , xC

are i.i.d. random variables that may realize to the same value.
5Similar to Definition 11, in this context we consider with high probability to mean that for all d > 0,

there exists some constant Cd for which if C = Cd · Ω (log(p)), then the probability is not more than 1
pd .
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adjacency matrix Ai, corresponding to the edges of G that v(xi) contributes to. That is, Ai

indicates edges (u, v) where au + αv(xi) = av for some scalar α ∈ Zp. Then the normalized

adjacency matrix A of G is equivalent to 1
C

∑C
i=1

1
p−1Ai.

Now consider an alternate way of defining the random variable A. For each i ∈ [C], let

wi = (yi, zi) ∈ Z2
p be a random element drawn uniformly from the subset of Z2

p with non-zero

first coordinate. Let adjacency matrices Bi indicate edges (u, v) where au+αwi = av for some

scalar α ∈ Zp. Then A is also equivalent to 1
C

∑C
i=1

1
p−1Bi. We will use this interpretation of

A moving forward.

Now consider the finite group Z2
p. Define the subset S = {α(yi, zi) : α ∈ Zp and i ∈ [C]},

where (yi, zi) ∈ Z2
p is chosen as above. Then G is the Cayley graph X(Z2

p, S). We then prove

and use the following result to complete the bulk of the proof.

Theorem 11. Let Z2
p be the 2-dimensional finite group of integers modulo p ≥ 5, ε > 1

p−1 ,

β > 0, and k = 8 ln(2)
δ2

(β + 1 + ln(p2)) for δ = ε(p−1)−1
p−2 . Additionally, let s1, . . . , sk ∈ Z2

p be

independent random variables, uniformly drawn from the set of elements with non-zero first

coordinate, {(g1, g2) ∈ Z2
p : g1 6= 0}. Finally, let the generating set S = {αsi : i ∈ [k] and α ∈

{1, . . . , p− 1}}. Then

Pr

[
λ2(X(Z2

p, S)) 6∈
[

1− ε
2

1,
1 + ε

2
1

]]
≤ 2−β.

We defer the proof of Theorem 11 to the end of this section, and for now return to the

proof of Theorem 10. The results of Theorem 11 give us the following conclusion.

Pr[λ2(G) ≥ ε] ≤ 2−β,

for ε > 1
p−1 , β > 0, and C = k = 8 ln(2)

δ2
(β + 1 + ln(p2)) for δ = ε(p−1)−1

p−2 . By Cheeger’s

inequality, λ2(G) ≤ ε implies that G is a 1−ε
2

-edge expander. We would like for G to be a
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1
3
-edge expander, so we set ε = 1

3
. This results in a value

k =
8 ln(2)(3(p− 2))2

(p− 4)2
(
β + 1 + ln(p2)

)
≤ O

(
β + ln(p2)

)
when p ≥ 5.

If β = ` log(p) for some constant `, then by Theorem 11, when we can set C = `·Ω (log(p)),

Pr [λ2(G) > 1/3] ≤ 1

p`
,

which fulfills our definition of with high probability.

Proof. (of Theorem 11)

Let ui be the element within the |Z2
p|-dimensional vector space of formal sums correspond-

ing to si’s contribution to the generating set S. That is, ui = 1
p−1
∑

α(αsi) ∈ Cp2 . Define s

to be the formal sum

s =
1

k

∑
i

ui =
1

k(p− 1)

∑
i,α

(αsi) ∈ Cp2 .

Note that the normalized adjacency matrix A of X(Z2
p, S) is exactly ŝ(R) when expressed

in the basis {1 · g : g ∈ Z2
p} of C[Z2

p]. Consider the decomposition of the regular represen-

tation R into its irreducible representations. This corresponds to an orthogonal direct sum

decomposition of C[Z2
p] into spaces invariant under each R(g). The eigenvalue 1 corresponds

directly to the trivial representation 1. It suffices then, to bound the spectrum of ŝ(R) when

restricted to the non-trivial representations appearing in the decomposition. Specifically,

λ2(X(Z2
p, S) = maxρ 6=1 ‖ŝ(ρ)‖.

For a formal sum u in C[Z2
p] and a (non-trivial) representation ρ of Z2

p, let û(ρ) =∑
g∈Z2

p
ugρ(g). So, ûi(ρ) = 1

p−1
∑

α ρ(αsi).
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We need to understand Eui [ûi(ρ)] in order to apply Proposition 2.

Eui [ûi(ρ)] =
1

p− 1
E

[∑
α

ρ(αsi)

]

=
1

p− 1

∑
α

E [ρ(αsi)]

=
1

1− p
(1− p)E(g1,g2)∈Z2

p:g1 6=0 [ρ(g1, g2)]

= E(g1,g2):g1 6=0 [ρ(g1, g2)]

To calculate E(g1,g2):g1 6=0 [ρ(g1, g2)], note that E(g1,g2) [ρ(g1, g2)] can be written as a convex

combination of E(g1,g2):g1=0 [ρ(g1, g2)] and E(g1,g2):g1 6=0 [ρ(g1, g2)].

First, note that E(g1,g2) [ρ(g1, g2)] = 0 always. Additionally, let us represent ρ using the

tuple (a, b), in which the function ρ (x, y) = e
2πi
p

(ax+by). Then

E(g1,g2):g1=0 [ρ(g1, g2)] =


1 if b = 0

0 otherwise

We now compute the convex combination.

E(g1,g2) [ρ(g)] =
1

p2

∑
(g1,g2)

ρ(g1, g2)

=
1

p2

∑
(g1,g2):g1=0

ρ(g1, g2) +
1

p2

∑
(g1,g2):g1 6=0

ρ(g1, g2)

=
p

p2
1

p

∑
(g1,g2):g1=0

ρ(g1, g2) +
p2 − p
p2

1

p2 − p
∑

(g1,g2):g1 6=0

ρ(g1, g2)

=
p

p2
E(g1,g2):g1=0 [ρ(g1, g2)] +

p2 − p
p2

E(g1,g2):g1 6=0 [ρ(g1, g2)]

We now have enough information to calculate Eûi [ûi(ρ)].

Eûi [ûi(ρ)] =

(
E(g1,g2) [ρ(g)]− p

p2
E(g1,g2):g1=0 [ρ(g1, g2)]

)
p2

p2 − p

Eûi [ûi(ρ)] =


− 1
p−1 if b = 0

0 otherwise
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In order to apply Proposition 2 and achieve our tail bound, we need for both ‖ûi(ρ)‖ ≤ 1,

which is true, and for Eûi [ûi(ρ)] ≥ µ1 for some constant µ > 0. Since Eûi [ûi(ρ)] equals

either 0 or a slightly negative number, we define variables vi to adjust this expectation.

Let vi = 1
2
(1 + ui) = 1

2
(1 + 1

p−1
∑

α αsi). Then v̂i = 1
2
(1 + 1

p−1
∑

α ρ(αsi)), and ‖v̂i(ρ)‖ ≤ 1.

Additionally,

E[v̂i(ρ)] =


1
2
− 1

2(p−1) if b = 0

1
2

otherwise

We would like to bound the probability that 1
k

∑
i v̂i(ρ) 6∈ [1−ε

2
1, 1+ε

2
1] for each representa-

tion ρ. Let δ = ε(p−1)−1
p−2 , which note is a positive value because ε > 1

p−1 . Then regardless of if

ρ = (a, b) has b = 0 or not, the interval
[
(1− ε)E[v̂i(ρ)], (1 + ε)E[v̂i(ρ)]

]
⊆
[
1−ε
2

1, 1+ε
2

1
]
. We

now apply Proposition 2.

Pr

[
λ2(X(Z2

p, S)) 6∈
[

1− ε
2

1,
1 + ε

2
1

]]
≤ Pr

[
∃ρ :

1

k

∑
i

v̂i(ρ) 6∈
[
(1− ε)E[v̂i(ρ)], (1 + ε)E[v̂i(ρ)]

]]

≤ 2p2 · exp

(
−δ2(p− 2)k

4 ln 2(p− 1)

)
= 2p2 · exp

(
−δ2(p− 2)

4 ln 2(p− 1)
· 8 ln(2)

δ2
(β + 1 + ln(p2))

)
= 2p2 · exp

(
−2(p− 2)

p− 1
(β + 1 + ln(p2))

)
≤ 2p2 exp

(
−2(p− 2)(β + 1)

p− 1
− ln(p2)

)
≤ 2 exp

(
−2(p− 2)(β + 1)

p− 1

)
≤ 2−β when p ≥ 5.
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CHAPTER 7

SEMI-OBLIVIOUS RECONFIGURABLE NETWORK DESIGN

To improve the high-probability bound on throughput from Chapter 6 to a bound that

holds with probability 1, we adopt a semi-oblivious routing protocol, which is a hybrid of a

primary scheme identical to the oblivious routing protocol from Chapter 6, and a failover

scheme (which is also oblivious), to be used in the low-probability case that the primary

scheme produces an infeasible flow. The failover scheme has latency Õ(N) and resembles VLB,

distributing flow over two-hop paths from the source to the destination by routing through

an intermediate node sampled from a nearly-uniform distribution. The challenge is to modify

the connection schedule to ensure that, over a long enough period of the schedule T , enough

two-hop paths exist between every source and destination. We accomplish this by using a

time-varying sequence of constellations in place of a fixed set of (g+1) phase blocks, described

and used in Section 6.1. The time-varying sequence of constellations that we construct forms

a sort of combinatorial design, covering every vector with non-zero coordinates an equal

number of times. This equal-coverage property is the key to proving that the failover routing

scheme balances load evenly.

Below, we state the main theorem of this chapter.

Theorem 12. Given any fixed throughput value r ∈ (0, 1
2
], let g = g(r) = b1

r
− 1c, and let

L∗upp(r,N) = gN1/g.

Then assuming 1
r
6∈ Z, there exists a family of distributions over semi-oblivious reconfig-

urable network designs for infinitely many network sizes N which attains maximum latency

Õ(L∗upp(r,N)) with high probability (and in expectation) over time-stationary demands, and

achieves throughput r with probability 1.

Similar to Sections 6.1 and 6.2, we will begin by constructing an SORN design S0 which
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is parameterized by N , g, and C, where C is a parameter which we set during our analysis

to achieve the appropriate tradeoffs between throughput and latency. We will then analyze

SN (g, C), a distribution over all SORN designs Sτ which are equivalent to S0 up to re-labeling

of nodes, and show that it satisfies the conclusion of Theorem 12.

Before we define S0, we first provide some intuition behind the design.

Definition 20. A (C, g)-constellation in Fgp is a sequence of C(g + 1) vectors for which the

following property holds. Any set of g distinct vectors forms a basis over the vector space Fgp.

The ORN design described in Chapter 6 was defined using phases of Vandermonde vectors.

This was only done to achieve the property that any set of g vectors, each chosen from a

different phase block, formed a basis over Fgp. No other special property of Vandermonde

vectors was required. Thus, using any (C, g)-constellation gives the same throughput-latency

tradeoffs found in Theorem 7.

In order to guarantee throughput r rather than achieve it with high probability, we need

to provide alternate routing paths in the low probability case that the network becomes

congested. We will do this by rotating through a series of different (C, g)-constellations, so

that in an entire period of the schedule, each node is directly connected to most other nodes

an equal number of times. Our alternate paths will then use a simple 2-hop Valiant load

balancing (VLB) routing strategy.

Lemma 5. Suppose A ∈ Fg×gp is an invertible matrix, and V = (v1, v2, . . . , vC(g+1)) is

a (C, g)-constellation in Fgp. Then the sequence AV = (Av1, Av2, . . . , AvC(g+1)) is also a

(C, g)-constellation in Fgp.

Proof. Suppose not, that there exists some set of vectors wi1 , . . . wig each from different

blocks of AV which are linearly dependent. Then WLOG there exists constants α1, . . . , αg−1

such that α1wi1 + . . .+ αg−1wig−1 = wig . Then α1Avi1 + . . .+ αg−1Avig−1 = Avig for vectors
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vi1 , . . . , vig each from different blocks of V . This is a contradiction due to distributivity of

matrix and vector multiplication, and because A is invertible.

7.1 Connection Schedule

We now move to defining the connection schedule of S0. Consider the set of all diagonal

invertible matrices M, and let two matrices M1,M2 be related by ∼ if they are scalar

multiples of one another. That is, M1 ∼M2 if and only if there is some scalar a ∈ Fp such

that M1 = aM2. Let A ⊂M contain one representative from each of the equivalence classes

of ∼. (Note that therefore, |A| = (p − 1)g−1.) Also let V be any sequence of C(g + 1)

distinct Vandermonde vectors not including the vector (1, 0, . . . , 0). Order V arbitrarily, so

that V = {v0,v1, . . . ,vC(g+1)−1}.

Then by Lemma 5, AV is a (C, g)-constellation for any matrix A ∈ A. Order the set

of matrices A arbitrarily, so that A = {A0, A1, . . . , A(p−1)g−1−1}. We rotate through the

(C, g)-constellations formed by matrices in A to achieve our connection schedule.

More formally, we set the period length of the schedule to be T = (p−1)g−1C(g+1)(p−1) =

(p − 1)gC(g + 1) < C(g + 1)N , and we identify each congruence class k (mod T ) with a

constellation number f , a phase number x and a scale factor s, for which 0 ≤ f ≤ (p−1)g−1−1,

0 ≤ x < C(g + 1), and 1 ≤ s < p, such that k = C(g + 1)(p− 1)f + (p− 1)x+ s− 1. It is

useful to think of timesteps as 3-tuples, k = (f, x, s), so we will sometimes abuse notation and

refer to timestep (f, x, s) in the sequel, when we mean k = C(g+ 1)(p− 1)f + (p− 1)x+ s− 1.

The connection schedule of R0, during timesteps t ≡ k (mod T ), uses permutation π0
k(a) =

a+ sAfvx, where f, x and s are the constellation number, phase number, and scale associated

to k.

As described above, SN(g, C) is a distribution over all SORN designs Sτ which are
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equivalent to S0 up to re-labeling. When we sample a random design Sτ , we sample

a uniformly random permutation of the node set τ : Fhp → Fgp, producing the schedule

πτk(a) = τ−1
(
π0
k

(
τ(a)

))
. Note that, for every edge from node a to node π0

t (a) in S0, there is

a unique equivalent edge from τ(a) to τ(π0
t (a)) in Sτ .

7.2 Routing Protocol

The routing protocol {S0
σ : σ ∈ SN} will, for each σ, use one of two types of routing paths.

The first type is the (g + 1)-hop paths that we wish to route on. For most σ, routing on

these paths will not overload any edges in the network. Thus, for those σ, S0
σ will include

only those such paths.

However, with low probability over σ, routing on these paths will cause too much congestion

on some edge in the network to be used. In this case, we will designate an alternate set of

paths for S0
σ to use. The alternate set of paths will take only 2 hops in the network, and will

suffer significantly higher maximum latency. However, we will show that since this is a low

probability event over choice of σ, this will not meaningfully increase our average latency.

To route from node a to node b starting at timestep t, first delay until a new (C, g)-constellation

AV begins.

(g + 1)-hop paths. In this case, we use the same distribution over routing paths as in

Section 6.2, when considering the set of C(g+1) phases all belonging to the (C, g)-constellation

beginning after time t. Due to the added delay, paths of this type have maximum latency

2C(g + 1)N1/g, exceeding the maximum latency cited in Section 6.2 by a factor less than 2.

2-hop paths. To describe the distribution over 2-hop paths, first consider the following.

Given a fixed Vandermonde vector v ∈ V , consider the set of edges formed by a→ a+sAv = b
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for all scalar factors s and matrices A ∈ A. Note that an edge between any fixed node pair

a, b for which the vector b − a has only non-zero coordinates appears exactly once in this

set. This is because A ∈ A contains all invertible diagonal matrices which are not scalar

multiples of each other. Additionally, an edge between a, b never appears if the vector b− a

has any coordinates equal to zero. (Recall the vector (1, 0, . . . , 0) 6∈ V.) Then across the

entire period, an edge between any node pair a, b for which the vector b− a has only non-zero

coordinates appears exactly C(g + 1) times, once for each v ∈ V .

Consider the following random process for choosing a 2-hop path from a to b. Uniformly

at random, choose a node b′ for which both b′ − a and b− b′ have only non-zero coordinates.

Also uniformly at random, choose Vandermonde vectors va, vb ∈ V. Compute the unique

invertible diagonal matrices Aa, Ab ∈ A and scalar factors sa, sb ∈ {1, . . . , p− 1} for which

b′−a = saAava and b−b′ = sbAbvb. Over the next full period of the schedule, or (p−1)gC(g+1)

timesteps, take the direct hop from a to b′ which appears during the (C, g)-constellation

AaV . Wait for the period to finish. Then during the next period, take the hop from b′ to b

which appears during the (C, g)-constellation AbV .

Note that paths of this type always take both hops during consecutive distinct periods, or

iterations, of the schedule. Thus, paths of this type will have maximum latency

2(p− 1)gC(g + 1) + C(g + 1)(p− 1) ≤ C(g + 1)N1/h + 2C(g + 1)N ≤ Õ(N),

because C = Õ(logN).

If routing rDσ on (g + 1)-hop paths does not overload edges in the network, then Sσ

routes all demand between a, σ(a) pairs on (g + 1)-hop paths. Otherwise, if routing rDσ

on (g + 1)-hop paths would overload some edge in the network, then Sσ routes all demand

between a, σ(a) pairs on 2-hop paths.

Note that S0
σ must make one choice for all timesteps t: to either route on (g + 1)-hop

paths or 2-hop paths. In Section 7.5, we discuss how to analyze a design which allows S0
σ to
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route flow on a combination of (g + 1)-hop and 2-hop paths, depending on starting timestep

t.

To route over Sτ for general τ , note that the edges of Sτ are in a bijection with S0. Thus,

any path from node a to node b in Sτ has a unique equivalent path from τ(a) to τ(b) in S0.

To define the routing protocol {Sτσ : σ ∈ SN} in Sτ , simply apply this bijection to the routing

paths from τ(a) to τ(σ(a)) in {S0
σ : σ ∈ SN}.

7.3 Latency-Throughput Tradeoff

Theorem 13. Given a fixed throughput value r, let g = g(r) = b1
r
− 1c and ε = ε(r) =

g + 1 − (1
r
− 1), and assume 1

r
6∈ Z. Let N be a prime power pg for primes p exceeding

max
{
C(g + 1), 2 + 2

1−ε ,
g+3
ε
− 2, 2−δ

1−δ

}
, where δ = (g+1)1/g

(g+2−ε)1/g . Also let γ = ln
(
g+2−ε
g+1

)
, let

C = log logN
γ2

ln(N), and let

L∗upp(r,N) = gN1/g.

Then:

1. the fixed SORN design S0 guarantees throughput r (with respect to stationary de-

mands), and achieves maximum latency Õ(L∗upp) with high probability under the uniform

distribution.

2. the family of distributions SN(g, C) guarantees throughput r, and achieves maximum

latency Õ(L∗upp) with high probability.

Note that if 1
r
∈ Z, then ε = 1, and there do not exist primes p for which p ≥ 2 + 2

1−ε .

Thus, as in Chapters 4 and 6, we condition against 1
r
∈ Z.

Both parts of this theorem will be proven by focusing on the probability that S0
σ must

deviate from sending all flow on (g + 1)-hop paths to sending all flow on 2-hop paths. This is
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directly correlated with when congestion occurs on physical edges in the design S0, if we were

to always send flow on (g + 1)-hop paths. We note the similarities between S0 and R0 from

Chapter 6, and apply the same exponential tail bounds of bilinear sums to get our result.

Proof. First, let us confirm that the 2-hop “failover scheme” of Sτ guarantees throughput

r. Fix some permutation demand Dσ and an edge e, and consider for each demand pair

i, σ(i) how much much flow is crossing edge e due to i, σ(i) traveling on 2-hop paths. If first

hop flow crosses edge e from i to σ(i), then it must be the case that tail(e) = i and both

head(e) − i and σ(i) − head(e) have only non-zero coordinates. Similarly, if 2nd hop flow

crosses edge e from i to σ(i), then head(e) = σ(i) and both tail(e)− i and σ(i)− tail(e) have

only non-zero coordinates.

Each demand pair i, σ(i) contributes rC(g + 1)(p − 1)g total flow per period. For any

node pair i, σ(i), there are at least (p − 2)g different nodes b for which b − i and σ(i) − b

both have only non-zero coordinates. And for each of these nodes b, there are exactly C

different phases which connect i to b, and exactly C different phases which connect b to σ(i).

Thus, the amount of first-hop flow traversing edge e is no more than rC(g+1)(p−1)g
C(p−2)g . This is no

more than 1 when p ≥ 2−δ
1−δ for δ = (g+1)1/g

(g+2−ε)1/g , which we condition on in the statement of the

theorem.

Thus, we focus on showing that S0 sends flow on (g + 1)-hop paths with high probability

over the uniform distribution.

Like before, we may assume without loss of generality that the demand matrix D(t) is

doubly stochastic for all t.

We first consider the failure probability of edges within each (C, g)-constellation individu-

ally. Fix an edge e and 0 ≤ q ≤ g, and consider the amount of flow traversing edge e traveling

on paths where edge e occurs in the (q + 1)-th phase block of the flow path.
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Note that, unlike in the proof of Theorem 8, edges e that appear in the (q + 1)th phase

block of a (C, g)-constellation, for 0 ≤ q ≤ g, will only have (q + 1)-th hop flow traversing

e, due to delaying flow before routing by whole (C, g)-constellations instead of single phase

blocks. Then the total amount of (q + 1)-th hop flow traversing edge e equals the total

amount of any-hop flow traversing edge e.

First we examine q = 0. First-hop flow traversing edge e originates at source node tail(e)

during the constellation preceding the one to which e belongs. There are C(g+ 1)(p− 1) time

steps during that phase block, and r units of flow per time step originate at tail(e). Each

unit of flow is divided evenly among a set of at least (p− 2)Cg+1 pseudo-paths, at most Cg

of which begin with edge e as their first hop. (After fixing the first hop and the destination

of a (g + 1)-hop pseudo-path, the rest of the path is uniquely determined by the g-tuple of

phases x2, . . . , xg+1.) Hence, of the rC(g + 1)(p− 1) units of flow that could traverse e as

their first hop, the fraction that actually do traverse e as their first hop is at most Cg

(p−2)Cg+1 .

Consequently, for an edge e occurring in the first phase block of a (C, g)-constellation, the

amount of first-hop flow on e is bounded above by rC(g+1)(p−1)·Cg
(p−2)Cg+1 =

(
p−1
p−2

)
(g+1)r. (Note that

this is not a probabilistic statement; the upper bound on first-hop flow holds with probability

1.) A symmetric argument shows that for an edge e occurring in the last phase block of a

(C, g)-constellation, the amount of last-hop flow on e is bounded above by
(
p−1
p−2

)
(g + 1)r as

well.

Now suppose 1 ≤ q ≤ g − 1, and let Yi be the random variable realizing the amount of

(q + 1)-th hop flow traversing edge e due to source node i, normalized by 1
g+1

. Clearly, the

total amount of (q + 1)-th hop flow traversing e will be (g + 1)
∑

i Yi. The variables Yi act

exactly as the random variables Xi in Section 6.3, in the proof of Theorem 8. Therefore, the

same tail bound conclusions about their sum are applicable.

Therefore, over the uniform distribution for the fixed design S0, and for the family of
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distributions SN(g, C), we have

Pr[e has ≥ (g + 1)eγr flow when routing (g + 1)-hop paths] ≤ 15N2e−
1

200
γ2C

=⇒ Pr[any edge e has ≥ (g + 1)eγr flow when routing (g + 1)-hop paths]

≤ (p− 1)g−1C(g + 1)(p− 1)N · 15N2
(
e−

1
200

γ2
)C

≤ 15N4(g + 1)
log logN

γ2
ln(N)e−

1
200

log logN ln(N)

≤
(

15N4(g + 1)
log logN ln(N)

γ2

)
N−

1
200

log logN

≤ O
(

1

γ2Nd

)
for any constant d.

Finally, we need to show that if none of the bad events as described above occur, if every

edge has at most eγr (q + 1)-th hop flow for 1 ≤ q ≤ g − 1, then no edge will be overloaded.

First, note that the amount of flow traversing edges e during the first and last phase blocks

of any constellation will be at most p−1
p−2(g + 1)r. This is no more than 1 when p ≥ g+3

ε
− 2,

which we conditioned on in the statement of the theorem.

Next, note that assuming no bad events occur, the amount of flow traversing edge e

occurring during any other phase block of any constellation must be at most

(g + 1)eγr = (g + 1)
g + 2− ε
g + 1

1

g + 2− ε
= 1.

7.4 Provably Separating ORN and SORN Capabilities

In this section we show that semi-oblivious routing has a provable asymptotic advantage

over oblivious routing in reconfigurable networks. In order to do so, we must compare the

guaranteed throughput versus latency tradeoffs achieved by the family of SORN designs
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SN (g, C) described above and distributions over ORN designs. We will show below that our

family of SORN designs SN (g, C) has a provable asymptotic advantage over ORNs in average

latency. To do so, we provide the following lower bound on average (expected) latency of

distributions over ORN designs.

Theorem 14. Consider any constant r ∈ (0, 1
2
]. Let h = h(r) =

⌊
1
2r

⌋
and εo = εo(r) =

h+ 1− 1
2r

, and let Lobl(r,N) be the function

Lobl(r,N) = εo(εoN)1/h +N1/(h+1).

Then for every N > 1 and every distribution of ORN designs R on N nodes that

guarantees throughput r, the expected average latency of R ∼ R is at least Ω(Lobl(r,N)).

The proof of Theorem 14 follows a similar structure as the lower bound proof of Sec-

tion 5.1.1, only with an added average latency constraint in the starting linear program,

which results in an additional variable in the corresponding dual program, which must be

reasoned about and assigned a value. We leave the proof to Section 5.3.

Theorem 15. Consider any constant r ∈ (0, 1
2
], and let g = g(r) = b1

r
− 1c and ε = ε(r) =

g + 1 − (1
r
− 1) Then if r ∈

(
0, 1

4

]
∪
[

1
4−(2/N1/6)

, 1
3

]
and 1

r
is not an integer, the family of

SORN designs SN(g, C) achieves asymptotically better average latency than any family of

ORN designs which guarantees throughput r.

Proof. By Theorem 14, any family of ORN designs which guarantees throughput r must

suffer average latency Ω (Lobl(r,N)). Also recall that the family of SORN designs SN(g, C)

achieves maximum latency Õ(gN1/g) with high probability as long as 1
r

is not an integer.

This implies it also achieves average latency Õ(gN1/g), since with probability 1 it achieves

maximum latency Õ(N). We divide the set of throughput values r ∈
(
0, 1

4

]
∪
[

1
4−(2/N1/6)

, 1
3

]
into the following cases.
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1. r ≤ 1
5
. Then g(r) > h(r) + 1. Since Lobl(r,N) ≥ N1/(h+1), then Lobl(r,N) is asymptoti-

cally greater than Õ(L∗upp).

2. r ∈
(
1
5
, 1
4

]
. Then εo(r) = h + 1 − 1

2r
≥ 1

2
, and g(r) > h(r). Therefore, Lobl(r,N) is

asymptotically greater than Õ(L∗upp).

3. r ∈
[

1
4−(2/N1/6)

, 1
3

]
. Then εo(r) ≥ 1

N1/6 , g(r) = 2, and h(r) = 1. So εo(εoN)1/h ≥(
1

N1/6

)2
N = N2/3. Additionally, gN1/g = 2

√
N . Therefore, Lobl(r,N) is asymptotically

greater than Õ(L∗upp).

7.5 Mixing (g + 1)-hop and 2-hop paths in our SORN Design

In defining the routing protocol of our SORN design in Section 7.2, we always chose to

route permutation demand Dσ on 2-hop paths if any edge e in any (C, g)-constellation would

become overloaded from routing Dσ on (g+1)-hop paths. However, this choice is a bit extreme.

After all, the connection schedule iterates through (p− 1)g−1 different (C, g)-constellations.

Label a (C, g)-constellation AV as contentious if there exists some edge e occurring

during constellation AV which is overloaded when routing demand Dσ with the (g + 1)-hop

routing scheme. It is more desirable if the flow which would be routed along non-contentious

constellations could still be routed on the more latency-efficient (g + 1)-hop paths, while

only the flow that would be routed on contentious constellations is relegated to the 2-hop

alternate paths.

This strategy slightly decreases the achievable throughput rate, due to reserving a small

amount of edge capacity on each edge for 2-hop paths. However, as long as the number of

contentious (C, g)-constellations k is small, we can still provably achieve throughput r for
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any r ∈ (0, 1
2
) for which ε(r) =

⌊
1
r
− 1
⌋

+ 1− (1
r
− 1) 6= 1. (Or in other words, for r which is

not the reciprocal of an integer.)

Corollary 6. Given a fixed throughput value r, let g = g(r) = b1
r
− 1c and ε = ε(r) =

g + 1− (1
r
− 1), and assume ε 6= 1. Let δ = 1−ε

2(g−1) and C = 6 log logN
δ2

ln(N), and assume that

N = pg for prime p for which C(g + 1) ≤ p. Consider the SORN design S described above

with parameters C and g, with the following alteration.

1. If there are no more than (1−ε)(p−2)g
4(p−1) contentious (C, g)-constellations over the entire

period, then only route the flow that would be routed on contentious constellations on

the alternate 2-hop paths. (This is exactly the flow that originates during a constellation

immediately prior to a contentious constellation.) Route all other flow on (g + 1)-hop

paths.

2. If there are more than (1−ε)(p−2)g
4(p−1) contentious (C, g)-constellations, then route all flow

on 2-hop paths.

Then this scheme can guarantee throughput r and achieves maximum latency Õ
(
gN1/g

)
with

high probability over the random sampling over σ, and achieves maximum latency Õ(N) in

the low-probability case.

Proof. Suppose that k different (C, g)-constellations are contentious, and thus the flow which

we would like to send only on (g + 1)-hop paths within those frames must instead be sent on

2-hop paths across two iterations of the schedule. This presents a balancing problem: since

most (C, g)-constellations are not contentious, most of the edges this flow will be sent on

have their own constellation’s (g + 1)-hop flows to forward along. Thus, we need to bound

the total amount of 2-hop flow on any edge in the network, given that k different frame’s

worth of flow is being routed on 2-hop paths.
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Fix an edge e, and consider for each demand pair i, σ(i) how much much flow is crossing

edge e due to i, σ(i). If first hop flow crosses edge e from i to σ(i), then it must be the case

that tail(e) = i and both head(e) − i and σ(i) − head(e) have only non-zero coordinates.

Similarly, if 2nd hop flow crosses edge e from i to σ(i), then head(e) = σ(i) and both tail(e)−i

and σ(i)− tail(e) have only non-zero coordinates.

If there are k contentious (C, g)-constellations, then the total amount of flow that must be

routed on 2-hop paths over the entire period will be rkNC(g + 1)(p− 1), with each demand

pair i, σ(i) contributing rkC(g + 1)(p− 1) flow per period.

For each edge e = (a, b), consider the total amount of first-hop flow from 2-hop paths

traversing the edge. First-hop flow traversing e must be traveling from source node i = a.

Also note that since edge e exists in the network, then the vector b − a must have only

non-zero coordinates. Then first-hop flow traverses edge e only when σ(a)− b also has only

non-zero coordinates.

For node a, let us consider the set of other 2-hop paths which could carry flow from

a to σ(a). (And thus, what other edges could carry first-hop 2-hop flow from a to σ(a).)

This is directly related to the number of nodes b′ for which σ(a)− b′ and b′ − a both have

non-zero coordinates. This is at least (p− 2)g, which occurs exactly when a and σ(a) have

no matching coordinates. Additionally, for a given first-hop edge e, the number of times an

equivalent edge appears at any point in the period is the number of Vandermonde vectors in

the constellation, or C(g + 1).

Thus, the amount of first-hop 2-hop flow that traverses edge e is always no more than

rkC(g + 1)(p− 1)

(p− 2)gC(g + 1)
=
rk(p− 1)

(p− 2)g
.

A similar argument shows that the amount of second-hop 2-hop flow traversing edge e

will also be no more than k(p−1)
(p−2)g .
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Now that we have this bound, let us bound the total amount of (g + 1)-hop and 2-hop

flow traversing some edge e.

Fix an edge e from a constellation that is not contentious. This edge will have both

(g + 1)-hop and 2-hop flow traversing it. Since the constellation is not contentious, we know

that the amount of (g + 1)-hop flow traversing e is no more than (1 + δ)(g + 1)r. Thus, the

total amount of flow traversing edge e is no more than

(1 + δ)(g + 1)r +
2rk(p− 1)

(p− 2)g

Setting this value equal to 1, thus maximizing r, we achieve

(1 + δ)(g + 1)r +
2rk(p− 1)

(p− 2)g
= 1

r

(
(1 + δ)(g + 1) +

2k(p− 1)

(p− 2)g

)
= 1

Now replace δ = 1−ε
2(g+1)

and r = 1
g+2−ε and solve for k to find the maximum value k may

take without overloading any edges.

1

g + 2− ε

((
1 +

1− ε
2(g + 1)

)
(g + 1) +

2k(p− 1)

(p− 2)g

)
= 1(

1 +
1− ε

2(g + 1)

)
(g + 1) +

2k(p− 1)

(p− 2)g
= g + 2− ε

g + 1 +
1− ε

2
+

2k(p− 1)

(p− 2)g
= g + 2− ε

2k(p− 1)

(p− 2)g
=

1− ε
2

k =
(1− ε)(p− 2)g

4(p− 1)

As stated in the theorem statement, this is the maximum value k can take without

overloading edges in the network.
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Now consider the probability that k (C, g)-constellations are contentious. This is clearly

no more than the probability that a single (C, g)-constellation is contentious, which occurs

with negligible probability as stated in the proof of Theorem 13.
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